Math, asked by jaipuriadarshan, 1 year ago

Find the area of triangle whose vertices are( 1,3), (-7,6) ,(5,-1)

Answers

Answered by NishantMishra3
11
★★★★★★★★★★★

here,
x1=1,y1=3

x2=-7,y2=6

x3=5,y3=-1



☆Area of triangle:


=>1/2 {x1(y2-y3) +x2(y3-y1)+x3(y1-y2)}

=>1/2{1(6+1)-7(-1-3)+5(3-6)}

=>1/2{7+28-15)

=>1/2×20

=>10

Area=10cm^2

==============

●hope it helps

Anonymous: Nice answer dude...
Anonymous: ^_^
Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=10\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (1,3) } \\  \\ \tt{: \implies Coordinate \: of \: B = (-7,6) } \\  \\ \tt{: \implies Coordinate \: of \: C = (5,-1) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |1(6 - (-1)) -7(-1 - 3) + 5(3 - 6)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |1\times 7 -7\times -4 + 5 \times -3 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |7 + 28 -15| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 20} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =10\: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions