Math, asked by shadabur, 1 year ago

find the area of triangle whose vertices are 10,6 , 2,5, -1,3​

Answers

Answered by syedanwarahmed
2

Answer:

Use determinant of a matrix formula to calculate area of the triangle.

Step-by-step explanation:

Based on the counterclockwise entry of the coordinates of the vertices of the triangle (x1, y1), (x2, y2), (x3, y3) or (10, 6), (2, 5), (-1, 3): A = (x1y2 + x2y3 + x3y1 – x1y3 – x2y1 – x3y2)/2.

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=6.5\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (10,6) } \\  \\ \tt{: \implies Coordinate \: of \: B = (2,5) } \\  \\ \tt{: \implies Coordinate \: of \: C = (-1,3) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |10(5 - 3) + 2(3 - 6) + (-1)(6 - 5)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |10 \times 2 +  2\times - 3 - 1 \times 1 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |20 - 6 - 1| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 13} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =6.5 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions