Math, asked by rushikeshpatel1231, 1 year ago

find the area of triangle whose vertices are (4,3) (1,4) (2,3)​

Answers

Answered by jai050803
8

Answer:

we know are of triangle

= 1/2 ( x1 (y2-y3) + x2 (y3-y1) + x3(y1-y2))

so solved the question with this formula

Attachments:
Answered by BrainlyConqueror0901
19

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=1\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (4,3) } \\  \\ \tt{: \implies Coordinate \: of \: B = (1,4) } \\  \\ \tt{: \implies Coordinate \: of \: C = (2,3) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |4(4 - 3) + 1(3 - 3) + 2(3 - 4)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |4 \times 1 +  1\times 0 + 2 \times -1 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |4 - 2| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 2} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =1 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions