Math, asked by gsvsaivinay, 3 months ago

find the area of triangle whose vertices are A(1, 2,3) B(2, 3,1) C((3, 1,2)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given the vertices of triangle ABC,

  • Coordinates of vertex A = (1, 2, 3)

  • Coordinates of vertex B = (2, 3, 1)

  • Coordinates of vertex C = (3, 1, 2)

Now,

  • We have to find the area of triangle ABC.

We use here

  • Vector method to find the area of triangle as it is in 3 dimension.

Now,

\rm :\longmapsto\: \vec{AB} \:  =  \vec{OB} -  \vec{OA}

\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} - (\hat{i} + 2\hat{j} + 3\hat{k})

\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} - \hat{i}  -  2\hat{j}  -  3\hat{k}

\rm :\longmapsto\:\vec{AB} = \hat{i} + \hat{j} - 2\hat{k}

Aɢᴀɪɴ,

\rm :\longmapsto\:\vec{AC} = \vec{OC} - \vec{OA}

\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} - (\hat{i} + 2\hat{j} + 3\hat{k})

\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} - \hat{i}  -  2\hat{j}  -  3\hat{k}

\rm :\longmapsto\:\vec{AC} = 2\hat{i}  -  \hat{j}  - \hat{k}

Now,

↝ Consider,

\rm :\longmapsto\: \vec{AB} \times \vec{AC}

 \rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\1&1& - 2\\2& - 1& - 1\end{array}\right | \end{gathered}

 \rm \:  =  \:  \:  \: \hat{i}( - 1 - 2) - \hat{j}( - 1 + 4) + \hat{k}( - 1 - 2)

 \rm \:  =  \:  \:  \:  - 3\hat{i} - 3\hat{j} - 3\hat{k}

Therefore,

\rm :\longmapsto\:  | \vec{AB} \times \vec{AC} | =  \sqrt{ {( - 3)}^{2}  +  {( - 3)}^{2} +  {( - 3)}^{2}  }

\rm :\longmapsto\:  | \vec{AB} \times \vec{AC} | =   \sqrt{9 + 9 + 9}

\rm :\longmapsto\:  | \vec{AB} \times \vec{AC} | =   \sqrt{27}

\rm :\longmapsto\:  | \vec{AB} \times \vec{AC} | =   3\sqrt{3}

↝ Hence,

\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} | \vec{AB} \times \vec{AC} |

\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} \times 3 \sqrt{3}

\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{3 \sqrt{3} }{2}   \: sq. \: units

Additional Information :-

 \boxed{ \red{ \sf \: Area_{(\parallel \: gram)} = | \vec{a} \times \vec{b} |}}

 \boxed{ \red{ \sf \: \vec{a} \times \vec{b} =  - \vec{b} \times \vec{a}}}

 \boxed{ \red{ \sf \:  \vec{a} \times \vec{a} = 0}}

 \boxed{ \red{ \sf \: |\vec{a} \times \vec{b}|  =  |\vec{a}| |\vec{b}|sin \theta}}

 \boxed{ \red{ \sf \: \vec{a} \times \vec{b} = \vec{0} \implies \: \vec{a} \parallel\vec{b}}}

Similar questions