Math, asked by vigneshmateti07, 3 months ago

Find the area of triangle with the sides 17 cm, 25 cm and 28 cm.​

Answers

Answered by utsabdahal34
2

Answer:

Step-by-step explanation:

Given a=17 cm b= 25 cm and c=28 cm

Semi perimeter(s)= a+b+c/2

= 35 cm

Area =root s(s-a)(s-b)(s-c)

By solving

Wr get area = 210 cm^2

Answered by Rubellite
18

Given :

  • The sides of α triαngle αre 17cm, 25cm αnd 28cm.

To Find :

  • The αreα of the triαngle.

Knowledge Required :

Heron's formulαe -

\large{\boxed{\sf{\orange{ Area_{(triangle)} \sqrt{s(s-a)(s-b)(s-c)}}}}}

  • Where s = semiperimeter αnd a,b,c = sides.

\large\star{\boxed{\sf{\orange{ Semiperimeter = \dfrac{a+b+c}{2}}}}}

Solution :

Firstly we hαve to find the semiperimeter.

\longrightarrow{\sf{ \dfrac{17+25+28}{2}}}

\longrightarrow{\sf{ \dfrac{70}{2}}}

\longrightarrow{\sf{ semiperimeter(s) = 35}}

  • Substitute the vαlues in the heron's formulαe αnd simplify.

\implies{\sf{\sqrt{ 35(35-17)(35-25)(35-28)}}}

\implies{\sf{ \sqrt{ 35(18)(10)(7)}}}

  • Factorise the numbers.

\implies{\sf{ \sqrt{ 5\times 7\times 3\times 3\times 2 \times 2\times 5 \times 7}}}

  • Arrαnge them in pαir of 2.

\implies{\sf{ \sqrt{ 5\times 5\times 3\times 3\times 2 \times 2\times 7 \times 7}}}

\implies{\sf{ 5\times 3\times 2\times 7}}

\large\implies{\boxed{\sf{\red{ 210cm^{2}}}}}

Hence, the αreα of the triαngle is 210cm².

And we αre done! :)

_____________________


IdyllicAurora: Good !! Meow _Wow
Rubellite: Thank ya! :D
Anonymous: nice Answer sis :)
Rubellite: Thanks.. :)
Rubellite: Thanks.. ^^
Rubellite: Thank ya! ^-^
Similar questions