Math, asked by samarjitsingh93, 10 months ago

Find the area of triangle with vertices 1,3 ( 1,7) and 8,4
C3l1q3​

Answers

Answered by Anonymous
3

Given :

  • Coordinates of triangle = A ( 1 , 3 )

  • Coordinates of triangle = B ( 1 , 7 )

  • Coordinates of triangle = A ( 8 , 4 )

To Find :

  • Area of the triangle

Solution :

\large \sf Area_{triangle} =  \dfrac{1}{2} \bigg[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg]

Here

 \sf x_1 = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:x_2 = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:x_3= 8 \\  \\ \sf y_1 = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:y_2 = 7 \:  \:  \:  \:  \:  \:  \:  \:  \:y_3= 4

Substitute values in formula

\implies \sf area =  \frac{1}{2} \bigg[1(7 - 4) + 1(4 - 3) + 8(3 - 7) \bigg] \\  \\\implies \sf Area =  \frac{1}{2} \bigg[1(3) + 1(1) + 8( - 4) \bigg] \\  \\\implies \sf Area =  \frac{1}{2} \bigg[3 +1 - 32 \bigg]\\  \\\implies \sf Area =  \frac{1}{2} \times  - ( 28 ) \\  \\ \large\implies \boxed{ \sf \purple{ Area =  - 14 \:  {unit}^{2}}}

Similar questions