Math, asked by snehagupta50, 9 months ago

Find the area of triangle with vertices A (3,0) B (7,0) C8,4)

Answers

Answered by BrainlyPopularman
9

GIVEN :

• Vertices of triangle A (3,0) , B(7,0) & C(8,4).

TO FIND :

Area of triangle = ?

SOLUTION :

If Vertices are  \bf A(x_1 , y_1 ) , B(x_2 , y_2 )\:\:and\:\:C(x_3 , y_3 ) then Area –

 \\ \bf \implies Area = \left|\begin{array}{ccc} \bf \: x_1 & \bf\:y_1& \bf1 \\ \\\bf \: x_2 & \bf\:y_2& \bf1 \\  \\ \bf \: x_3 & \bf\:y_3& \bf1\end{array}\right|\\

• Here –

 \\ \bf  \:\: {\huge{.}} \:\:\:  x_1 = 3 \\

 \\ \bf  \:\: {\huge{.}} \:\:\:  y_1 = 0 \\

 \\ \bf  \:\: {\huge{.}} \:\:\:  x_2 = 7 \\

 \\ \bf  \:\: {\huge{.}} \:\:\:  y_2 = 0 \\

 \\ \bf  \:\: {\huge{.}} \:\:\:  x_3 = 8\\

 \\ \bf  \:\: {\huge{.}} \:\:\:  y_3 = 4 \\

• Now put the values –

 \\ \bf \implies Area = \left|\begin{array}{ccc} \bf \:3 & \bf\:0& \bf1 \\ \\\bf \: 7& \bf\:0& \bf1 \\  \\ \bf \:8& \bf\:4& \bf1\end{array}\right|\\

 \\ \bf \implies Area = 3 \{(1)(0) - (4)(1)\} - 0 \{ (7)(1) - (8)(1)\} + 1 \{(7)(4) - (8)(0) \}\\

 \\ \bf \implies Area = 3 \{0-4\} - 0 \{ 7 - 8\} + 1 \{28-0\}\\

 \\ \bf \implies Area = 3 \{-4\} - 0 \{ - 1\} + 1 \{28\}\\

 \\ \bf \implies Area = - 12- 0 + 28\\

 \\ \bf \implies Area =28 - 12\\

 \\ \bf \implies \large{ \boxed{ \bf Area =16 \:  \: sq. \: unit}}\\

Answered by sanchitachauhan241
6

{\sf{\underline{\underline{\pink{GIVEN :–}}}}}

ᴠᴇʀᴛɪᴄᴇꜱ ᴏꜰ ᴛʀɪᴀɴɢʟᴇ ᴀ (3,0) , ʙ(7,0) & ᴄ(8,4).

{\sf{\underline{\underline{\pink{To \  FIND :–}}}}}

\sf\green{Area \ of \  triangle = ?}

{\sf{\underline{\underline{\pink{SOLUTION :–}}}}}

ɪꜰ ᴠᴇʀᴛɪᴄᴇꜱ ᴀʀᴇ

\bf A(x_1 , y_1 ) , B(x_2 , y_2 )\:\:and\:\:C(x_3 , y_3 )

\sf\green{then \ Area –}

\begin{gathered}\\ \bf \implies Area = \left|\begin{array}{ccc} \bf \: x_1 & \bf\:y_1& \bf1 \\ \\\bf \: x_2 & \bf\:y_2& \bf1 \\ \\ \bf \: x_3 & \bf\:y_3& \bf1\end{array}\right|\\\end{gathered}

{\sf{\underline{\underline{\pink{Here-}}}}}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: x_1 = 3 \\\end{gathered}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: y_1 = 0 \\\end{gathered}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: x_2 = 7 \\\end{gathered}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: y_2 = 0 \\\end{gathered}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: x_3 = 8\\\end{gathered}

\begin{gathered}\\ \bf \:\: {\huge{.}} \:\:\: y_3 = 4 \\\end{gathered}

\sf\green{ Now \ put \ the \  values –}

\begin{gathered}\\ \bf \implies Area = \left|\begin{array}{ccc} \bf \:3 & \bf\:0& \bf1 \\ \\\bf \: 7& \bf\:0& \bf1 \\ \\ \bf \:8& \bf\:4& \bf1\end{array}\right|\\\end{gathered}

\begin{gathered}\\ \bf \implies Area = 3 \{(1)(0) - (4)(1)\} - 0 \{ (7)(1) - (8)(1)\} + 1 \{(7)(4) - (8)(0) \}\\\end{gathered}

\begin{gathered}\\ \bf \implies Area = 3 \{0-4\} - 0 \{ 7 - 8\} + 1 \{28-0\}\\\end{gathered}

\begin{gathered}\\ \bf \implies Area = 3 \{-4\} - 0 \{ - 1\} + 1 \{28\}\\\end{gathered}

\begin{gathered}\\ \bf \implies Area = - 12- 0 + 28\\\end{gathered}

\begin{gathered}\\ \bf \implies Area =28 - 12\\\end{gathered}

\begin{gathered}\\ \bf \implies \large{ \boxed{ \bf Area =16 \: \: sq. \: unit}}\\\end{gathered}

Similar questions