English, asked by ashamammam2, 2 months ago

Find the area of triangle with verticle(1,1),(2,3) and (4,5)​

Answers

Answered by sowmyahellokitty
1

Explanation:

check the poto for the answer

Attachments:
Answered by SachinGupta01
12

\bf \underline{ \underline{\maltese\:Given} }

 \sf  Vertices = (1,1) \: , \: (2,3) \:  and \:  (4,5)

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf \implies  Area  \: of  \: triangle = \:  ?

\bf\underline{ \underline{\maltese\:Solution } }

\sf Let \: the \: vertices \: be :

\bf \implies  A(1,1) \: , \: B(2,3) \:  and \:C  (4,5)

\bf \underline{Now},

\underline{\boxed{\bf Area \ of \ triangle = \dfrac{1}{2} \times | \ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) \ |}}

\bf \underline{Where},

 \implies \: \sf x_1 = 1

\implies \: \sf x_2 = 2

\implies \: \sf x_3 = 4

 \implies \: \sf y_1 = 1

 \implies \: \sf y_2 = 3

 \implies \: \sf y_3 = 5

\sf Now, substituting \: the \: values,

   \sf\implies \dfrac{1}{2} \times | \ 1(3-5)+2(5-1)+4(1-3) \ |

   \sf\implies \dfrac{1}{2} \times | \ 1(-2)+2(4)+4( - 2) \ |

   \sf\implies \dfrac{1}{2} \times |  -2+8+ (- 8) \ |

   \sf\implies \dfrac{1}{2} \times |   - 2 \ |

   \sf\implies { \dfrac{1}{\cancel{2}} \times\cancel{2} } = 1

 \sf \implies 1  \: units^{2}

 \underline{ \boxed{ \bf \red{Area \:  of  \: the \:  triangle = 1 \:  units^{2} }}}

Similar questions