find the area of triangles formed by the vertices (1,2) (5,7) and (5,-3)
Answers
Given :
- Coordinates of vertices of the triangle are (1,2) , (5,7) and (5,-3)
To Find :
- The Area of triangle formed
Knowledge Required :
The area of the triangle formed when the coordinates of vertices of the triangle are (x₁ , y₁) , (x₂ , y₂) and (x₃ , y₃) is given by ,
Solution :
By comparing the coordinates of the given vertices with the formula we get ,
- x₁ = 1, x₂ = 5 , x₃ = 5
- y₁ = 2 , y₂ = 7 , y₃ = -3
Substituying the values ,
Answer:
Given :
Coordinates of vertices of the triangle are (1,2) , (5,7) and (5,-3)
To Find :
The Area of triangle formed
Knowledge Required :
The area of the triangle formed when the coordinates of vertices of the triangle are (x₁ , y₁) , (x₂ , y₂) and (x₃ , y₃) is given by ,
\begin{gathered} \\ \star \: \boxed{\purple{\sf{Area = \frac{1}{2} | x_1(y_2 - y_3) + x_2( y_3 - y_1) + x_3(y_1 - y_2)| .}}}\end{gathered}
⋆
Area=
2
1
∣x
1
(y
2
−y
3
)+x
2
(y
3
−y
1
)+x
3
(y
1
−y
2
)∣.
Solution :
By comparing the coordinates of the given vertices with the formula we get ,
x₁ = 1, x₂ = 5 , x₃ = 5
y₁ = 2 , y₂ = 7 , y₃ = -3
Substituying the values ,
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | 1(7 - ( - 3)) +5( - 3 - 2) +5(2 - 7) | \\ \\ \end{gathered}
:⟹a=
2
1
∣1(7−(−3))+5(−3−2)+5(2−7)∣
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | 1(7 + 3) +5( - 5) +5( - 5) | \\ \\ \end{gathered}
:⟹a=
2
1
∣1(7+3)+5(−5)+5(−5)∣
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | 1(10) + ( - 25) + ( - 25) | \\ \\ \end{gathered}
:⟹a=
2
1
∣1(10)+(−25)+(−25)∣
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | 10 - 25 - 25 | \\ \\ \end{gathered}
:⟹a=
2
1
∣10−25−25∣
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | 10 -50 | \\ \\ \end{gathered}
:⟹a=
2
1
∣10−50∣
\begin{gathered} \\ : \implies \sf \: a = \frac{1}{2} | - 40| \\ \\ \end{gathered}
:⟹a=
2
1
∣−40∣
\begin{gathered} \\ : \implies{\boxed{\pink{\sf {\: a = 20 \: sq. \: units }}}} \: \bigstar\\ \\ \end{gathered}
:⟹
a=20sq.units
★
\begin{gathered} \\ \therefore {\underline{\sf{Hence , The \: area \: of \: the \: Triangle \: formed \: is \: \bold{ 20 \: sq.units}}}}\end{gathered}
∴
Hence,TheareaoftheTriangleformedis20sq.units