Math, asked by shaiksamreen, 1 year ago

find the area of triangles whose vertices are (2,0),(-1,3)and(2,4)?

Answers

Answered by Anonymous
7

Heya user..!!

Here is ur answer..!!

______________________________________________________________

Answer:

By using the formula of area of triangle then we get the area of triangles whose vertices are (2,0),(-1,3)and(2,4).

Lets start solving..!!

x₁ =       2                 ,   y₁ = 0

x₂ =      -1                 ,  y₂ = 3

x₃ =        2                 , y₃ = 4

Area of triangle =  1/2 {x1(y2-y3) + x2(y3-y1) + x3(y1-y2)}

1/2 { 2 ( 3 - 4 ) - 1 (4 - 0 )+ 2 ( 0 - 3 ) }

1/2 ( 2 ( - 1 ) - 4 - 6 )

1/2 ( - 2 - 10 )

1/2 ( -12 )

→ - 6

So here minus sign is neglected.

∴ Area of triangles whose vertices are (2,0),(-1,3)and(2,4) are : 6cm.

_______________________________________________________________

I Hope this may help u..!!

Be Brainly..!!

Keep smiling..!!

:)


shaiksamreen: yaha par brainlist ka option nahi hai tho mai kaisa dadu app ko
Anonymous: ok its ok
shaiksamreen: sorry
shaiksamreen: but
Anonymous: ??
Anonymous: well its ok thats not ur fault naa.. :)
shaiksamreen: haaaaan
muskaan90: thnxx
Anonymous: foe what..?
Anonymous: for*
Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=6\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (2,0) } \\  \\ \tt{: \implies Coordinate \: of \: B = (-1,3) } \\  \\ \tt{: \implies Coordinate \: of \: C = (2,4) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |2(3 - 4)-1(4 - 0) + 2(0 - 3)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |2 \times -1 -1\times 4 + 2 \times -3 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-2-4 -6| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 12} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =6 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions