Math, asked by tanarikumari6, 2 months ago

find the area scalane triangle whose sides are 10cm 12cm and 14cm​

Answers

Answered by SachinGupta01
8

\bf \underline{ \underline{\maltese\:Given} }

\sf Sides \: of \: the \: scalane \: \triangle \: are \: 10 \: cm, \: 12 \: cm \: and \: 14 \: cm.

\bf \underline{ \underline{\maltese\:To \: find } }

 \sf \implies Area \:  of \:  that \:  triangle = \:  ?

\bf \underline{ \underline{\maltese\:Solution } }

\sf Using \: Heron's \: formula :

\underline{\boxed{\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}

 \bf \underline{Now},

 \sf \implies s =  \dfrac{S um \:  of \:  all  \: sides}{2}

 \sf \implies s =  \dfrac{a + b + c }{2}

 \sf \implies s =  \dfrac{10 + 12 + 14}{2}

 \sf \implies s =  \cancel \dfrac{36}{2}

 \sf \implies s =  18

\underline{ \sf \: Thus, \: semi-perimeter = 18 \: cm }

\bf \underline{Now}, \sf \: area \: of \: triangle :

\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}

\sf{Area = \sqrt{18(18 - 10)(18 - 12)(18 - 14)}}

\sf{Area = \sqrt{18 \times 8 \times 6 \times 4}}

\sf{Area =\sqrt{2 \times  \underbrace{3 \times 3} \times \underbrace{2 \times 2} \times \underbrace{2 \times 2} \times 3 \times \underbrace{2 \times 2}}}

\sf{Area = \sqrt{2 \times  (3)^{2}  \times (2)^{2} \times (2)^{2} \times 3 \times (2)^{2}}}

\sf{Area = \sqrt{6}} \times  \sqrt{(3)^{2}}  \times  \sqrt{(2)^{2}}  \times \sqrt{(2)^{2}}  \times \sqrt{(2)^{2}}

\sf{Area = \sqrt{6}} \times 3  \times 2  \times 2  \times 2

\sf{Area = \sqrt{6}} \times 24

\sf{Area =  24\sqrt{6} \: cm^2}

\underline{ \boxed{ \bf \red{ Hence, \: area \: of \: \triangle \: is \: 24\sqrt{6} \: cm^2 }}}

Similar questions