Math, asked by hajirahsiddiq, 7 months ago

Find the areas of given polygons.
a &
D
4.5 cm
5 cm
12 cm
G
A
С
5.5 cm
В
Can someone give the full explanation to this.

Attachments:

Answers

Answered by Anonymous
41

 \:  \:  \underline{\bf{ \: Given:- \: }}

  • AD = 12cm
  • EF = 4.5cm
  • DC = 5cm
  • BG = 5.5cm

 \:  \:  \underline{\bf{ \: Find:- \: }}

  • Area of the given polygon.

 \:  \:  \underline{\bf{ \: Solution:- \: }}

we, know that

  \underline{\boxed{\sf Area \: of \: Triangle =  \dfrac{1}{2} \times b \times h}}

Using this Formula we can find the area of whole polygon.

So,

In ∆AED

 \dashrightarrow\sf Area \: of \: Triangle =  \dfrac{1}{2} \times b \times h \\  \\

 \dashrightarrow\sf A_{1}=  \dfrac{1}{2} \times AD \times EF \\  \\

where,

  • AD = 12cm
  • EF = 4.5cm

So,

 \dashrightarrow\sf A_{1}=  \dfrac{1}{2} \times AD \times EF \\  \\

 \dashrightarrow\sf A_{1}=  \dfrac{1}{2} \times 12 \times 4.5 \\  \\

 \dashrightarrow\sf A_{1}=  \dfrac{1}{2} \times 54 \\  \\

 \dashrightarrow\sf A_{1}=  \dfrac{54}{2}\\  \\

 \dashrightarrow\sf A_{1}=27 {cm}^{2} \\  \\

  \small{\therefore\sf A_{1}=27 {cm}^{2}} \\  \\  \\

Now, In ∆ADC

 \dashrightarrow\sf Area \: of \: Triangle =  \dfrac{1}{2} \times b \times h \\  \\

 \dashrightarrow\sf A_{2}=  \dfrac{1}{2} \times AD \times DC \\  \\

where,

  • AD = 12cm
  • DC = 5cm

So,

 \dashrightarrow\sf A_{2}=  \dfrac{1}{2} \times AD \times DC \\  \\

 \dashrightarrow\sf A_{2}=  \dfrac{1}{2} \times 12 \times 5 \\  \\

 \dashrightarrow\sf A_{2}=  \dfrac{1}{2} \times 60 \\  \\

 \dashrightarrow\sf A_{2}=  \dfrac{60}{2}\\  \\

 \dashrightarrow\sf A_{2}=30 {cm}^{2} \\  \\

  \small{\therefore\sf A_{2}=30 {cm}^{2}} \\  \\  \\

Now, In ∆ABC

 \dashrightarrow\sf Area \: of \: Triangle =  \dfrac{1}{2} \times b \times h \\  \\

 \dashrightarrow\sf A_{3}=  \dfrac{1}{2} \times BG \times AC \\  \\

where,

  • BG = 5.5cm
  • AC = 12cm

So,

 \dashrightarrow\sf A_{3}=  \dfrac{1}{2} \times BG \times AC \\  \\

 \dashrightarrow\sf A_{3}=  \dfrac{1}{2} \times 5.5\times 12 \\  \\

 \dashrightarrow\sf A_{3}=  \dfrac{1}{2} \times 66\\  \\

 \dashrightarrow\sf A_{3}=  \dfrac{66}{2}\\  \\

 \dashrightarrow\sf A_{3}=33 {cm}^{2} \\  \\

Area of whole polygon

 \sf  :\to A_{1} + A_{2} + A_{3} \\  \\

 \sf  :\to 27 + 30 + 33 =  90  {cm}^{2} \\  \\

\small{\underline{\sf  \therefore Area \: of \: the \: given \: polygon \: 90  {cm}^{2}}}

Attachments:
Answered by shubhamkh9560
6

Step-by-step explanation:

12 cm long, its perimeter is. (a) 18 cm. (b) 27 cm. (c) 36 cm. (d) 54 cm. Fig. 9.7. Solution: ... Total area covered by both the paths ... Find the area of a parallelogram shaped shaded region.

Similar questions