Math, asked by yakshitakhatri2, 2 months ago

❛ Find the areas of the shaded region in the given figure..❜

✘ no spam ✘​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bold{Solution :-  }}

It is given that

  • Radius of big semi-circle, R = 14 cm.

So,

  • Area of big semi-circle is given by

\rm :\longmapsto\:A_1 =  \: \dfrac{1}{2}  \: \pi \:  {R}^{2}

\rm :\longmapsto\:A_1 = \dfrac{1}{2}  \times \dfrac{22}{7}  \times  {14}^{2}

\rm :\longmapsto\: \boxed{ \bf \: A_1 \:  =  \: 308 \:  {cm}^{2} }

Now,

  • Radius of small semi-circle, r = 7 cm

So,

  • Area of 2 small semi-circle are given by

\rm :\longmapsto\:A_2 =  \:2 \times  \:  \dfrac{1}{2}  \: \pi \:  {r}^{2}

\rm :\longmapsto\:A_2 =   \: \pi \:  {r}^{2}

\rm :\longmapsto\:A_2 = \: \dfrac{22}{7}  \times  {7}^{2}

\rm :\implies\: \boxed{ \bf \: A_2 \:  =  \: 154 \:  {cm}^{2} }

Hence,

  • Total area of shaded region is given by

\rm :\longmapsto\:\tt \: Area_{(shaded \: region)} = A_1 + A_2

\rm :\longmapsto\:\tt \: Area_{(shaded \: region)} = 308 + 154

\rm :\longmapsto\: \boxed{\tt \: Area_{(shaded \: region)} = 462 \:  {cm}^{2}}

Additional Information :-

\rm :\longmapsto\:\tt \: Area_{(circle)} = \pi \:  {r}^{2}

\rm :\longmapsto\:\tt \: Area_{(sector)} = \dfrac{\pi \:  {r}^{2}  \theta}{360}

\rm :\longmapsto\:\tt \: Area_{(sector)} = \dfrac{1}{2} lr

\rm :\longmapsto\:\tt \: Area_{(major \: sector)} = \dfrac{\pi \:  {r}^{2}  (360 - \theta)}{360}

\rm :\longmapsto\:\tt \: Area_{(minor \: segment)} = \dfrac{ {r}^{2} }{2}  \bigg(\dfrac{\pi \:\theta}{180}  - sin\theta \bigg)

\rm :\longmapsto\:\tt \: Area_{(equilateral  \: \triangle)} = \dfrac{ \sqrt{3} }{4}  {(side)}^{2}

Similar questions