Math, asked by shriya18390, 3 days ago

find the argument of...'i'​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:i

Let convert the given complex number to polar form.

So, Let assume that

\rm :\longmapsto\:i = r(cosx + i \: sinx)

where,

↝ r is the length of complex number

↝ x is argument of complex number

So, On comparing real and Imaginary parts, we get

 \red{\rm :\longmapsto\:rcosx = 0 \:  -  -  - (1)}

and

 \red{\rm :\longmapsto\:rsinx = 1 \:  -  -  - (2)}

On squaring equation (1) and (2) and add, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}x +  {r}^{2} {sin}^{2}x = 0 + 1

\rm :\longmapsto\: {r}^{2}( {cos}^{2}x +  {sin}^{2}x )= 1

\rm :\longmapsto\: {r}^{2}= 1

\rm \implies\:\boxed{ \tt{ \: r \:  =  \: 1 \: }}

On substituting the value of r, in equation (1) and (2), we get

\rm :\longmapsto\:cosx = 0

and

\rm :\longmapsto\:sinx = 1

\rm \implies\:\boxed{ \tt{ \: x \:  =  \:  \frac{\pi}{2} \: }}

Hence,

\rm \implies\:\boxed{ \tt{ \: argument \: of \: i \:  =  \:  \frac{\pi}{2} \: }}

More to know :-

Short Cut trick :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf z = x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf z =  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|  \\ \\ \sf z =  - x - iy & \sf  - \pi  + {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg| \\ \\ \sf z = x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|  \end{array}} \\ \end{gathered}

Similar questions
Math, 8 months ago