Math, asked by Truebrainlian9899, 2 months ago

Find the arra of shaded region in figure. ​

Attachments:

Answers

Answered by friends1664
0

Area of that (unshaded) right angle triangle is 30 cm by applying formula.

So, for area of shaded part.

Subtract to get area of shaded part:-

AREA OF FULL TRIANGLE - AREA OF NONSHADED PART = AREA OF SHADED PART!

hope it helps you friend!

PLEASE FOLLOW AND MARK ME AS BRIAINLIEST!!

PLEASE FOLLOW MY TOP FOLLOWING!

I WILL TOO FOLLOW AND GIVE THANKS!

PLEASE THANK THIS TOO!

"Thank you friend!"

(❁´◡`❁)

Answered by ItzBrainlyLords
1

☞︎︎︎ Solution :

Given :

  • AO = 12cm

  • BO = 5cm

  • AC = 15cm

  • BC = 14cm

★ Solving :

↣ Area of △AOB

 \large \:  \:  \:   \: \:  \:  \:  =  \dfrac{1}{2}  \times  \rm oa \times ob

 \large \:  \:  \:   \: \:  \:  \:  =  \dfrac{1}{2}  \times  \rm 12 \times 5

 \large \:  \:  \:   \: \:  \:  \:  = \rm 30c {m}^{2}

★ Also,

 \large \rm \rightarrow \:  ab {}^{2}  = o {a}^{2}  + ob {}^{2}

 \large \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:   ab{}^{2}  = 12^{2}  + {5}^{2}

 \large \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:   ab{}^{2}  = 144^{}  + {25}^{}

 \large \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:   ab{}^{2}  = 169

 \large \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:   ab{}^{}  =  \sqrt{ 169 \: }

 \large \bold{ \therefore \rm \:  \: ab = 13cm}

★ Finding s with formula -

 \large  \looparrowright\boxed{\rm  \: s =  \dfrac{a + b + c}{2} }

 \:  \:  \:  \:  \large \rm \:   \: : ⇒ \: s =  \dfrac{14 + 15 + 13}{2}

 \:  \:  \:  \:  \large \rm \:   \: : ⇒ \: s =  \dfrac{42}{2}

 \large \bold{ \therefore \rm \:  \: s = 21cm}

★ Area of triangle ABC

  • Using Herons Formula :

\:

 \boxed{ \large \rm =  \:  \sqrt{s(s - a)(s - b)(s - c)} }

\:

  • Solving :

\:

\rm    \large  : ⇒   \: \sqrt{21(21 - 14)(21 - 15)(21 - 13)}

\:

 \large\rm   \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{21 \times 7 \times 6 \times 8}

\:

 \large\rm   \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{7056}

 \\  \large\rm   \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \therefore \: area \: =  84 {cm}^{2}

\:

★ area of shaded region :

\:

= 84cm² - 30cm²

\:

Area of shaded region = 54cm²

Similar questions