Math, asked by Jahnvi0001, 7 months ago

Find the average of the numbers.

(a). 2, 3, 5, 7, 11

(b). 5⅓, 3½, 4½, 4

pl pl pl answer fast

Answers

Answered by Anonymous
37

\large\boxed{{Question:-}}

Find the average of the numbers.

Find  \: the \:  average  \: of \:  the  \: numbers. </p><p>

(a) \: 2, 3,5,7,11

(b) \: 5 \dfrac{1}{3} ,3 \dfrac{1}{2},4 \dfrac{1}{2} ,4

\large\boxed{{Solution:-}}

(a) \:  \:Sum  \: of \:  the \:  given  \: numbers = (2 + 3 + 5 + 7 + 11) = 28

Number  \: of  \: these \:  numbers = 5

Average \:  of \:  the \:  given  \: numbers =  \frac{ Sum \:  of \:  given  \: numbers }{ Number \:  of  \: these  \: numbers }  \\  =  \frac{28}{5}  = 5.6

Hence, the \:  average \:  of  \: the  \: given \:  numbers  \: is  \: 5.6

(b)The  \: given  \: numbers  \: are  \:  \frac{16}{3}, \frac{7}{2} , \frac{9}{2}  \: and \: 4

Sum \:  of \:  the  \: given \:  numbers  = ( \frac{16}{3}  +  \frac{7}{2}  +  \frac{9}{2}  +  \frac{4}{1}  ) \\  = ( \frac{32 + 21 + 27 + 24}{6} ) =  \frac{104}{6}  =  \frac{52}{3}

Number \:  of \:  these  \: numbers = 4

Average  \: of  \: these  \: numbers  = ( \frac{52}{3}  \div 4) = ( \frac{52}{3}   \times  \frac{1}{4} ) =  \frac{13}{3}  =4  \frac{1}{3}

Hence, the \:  average \:  of \:  the  \: given  \: numbers \:  is \:  4 \frac{1}{3}

\large\boxed{{Extra\: information:-}}

  • Average =  \frac{sum \: of \: the \: given \: numbers}{number \: of \: observations}
  • Average \: of \: given \: numbers =  \frac{sum \: of \: the \: given \: numbers}{numbers \: of \: these \: numbers}
Answered by Anonymous
4

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

(a)Sumofthegivennumbers=(2+3+5+7+11)=28

Number \: of \: these \: numbers = 5Numberofthesenumbers=5

$$\begin{lgathered}Average \: of \: the \: given \: numbers = \frac{ Sum \: of \: given \: numbers }{ Number \: of \: these \: numbers } \\ = \frac{28}{5} = 5.6\end{lgathered}$$

$$Hence, the \: average \: of \: the \: given \: numbers \: is \: 5.6$$

$$(b)The \: given \: numbers \: are \: \frac{16}{3}, \frac{7}{2} , \frac{9}{2} \: and \: 4$$

$$\begin{lgathered}Sum \: of \: the \: given \: numbers = ( \frac{16}{3} + \frac{7}{2} + \frac{9}{2} + \frac{4}{1} ) \\ = ( \frac{32 + 21 + 27 + 24}{6} ) = \frac{104}{6} = \frac{52}{3}\end{lgathered}$$

$$Number \: of \: these \: numbers = 4$$

$$Average \: of \: these \: numbers = ( \frac{52}{3} \div 4) = ( \frac{52}{3} \times \frac{1}{4} ) = \frac{13}{3} =4 \frac{1}{3}$$

$$Hence, the \: average \: of \: the \: given \: numbers \: is \: 4 \frac{1}{3}$$

$$\large\boxed{{Extra\: information:-}}$$

$$Average = \frac{sum \: of \: the \: given \: numbers}{number \: of \: observations}$$

$$Average \: of \: given \: numbers = \frac{sum \: of \: the \: given \: numbers}{numbers \: of \: these \: numbers}$$

Similar questions