Find the average of the numbers.
(a). 2, 3, 5, 7, 11
(b). 5⅓, 3½, 4½, 4
pl pl pl answer fast
Answers
Find the average of the numbers.
(a)Sumofthegivennumbers=(2+3+5+7+11)=28
Number \: of \: these \: numbers = 5Numberofthesenumbers=5
$$\begin{lgathered}Average \: of \: the \: given \: numbers = \frac{ Sum \: of \: given \: numbers }{ Number \: of \: these \: numbers } \\ = \frac{28}{5} = 5.6\end{lgathered}$$
$$Hence, the \: average \: of \: the \: given \: numbers \: is \: 5.6$$
$$(b)The \: given \: numbers \: are \: \frac{16}{3}, \frac{7}{2} , \frac{9}{2} \: and \: 4$$
$$\begin{lgathered}Sum \: of \: the \: given \: numbers = ( \frac{16}{3} + \frac{7}{2} + \frac{9}{2} + \frac{4}{1} ) \\ = ( \frac{32 + 21 + 27 + 24}{6} ) = \frac{104}{6} = \frac{52}{3}\end{lgathered}$$
$$Number \: of \: these \: numbers = 4$$
$$Average \: of \: these \: numbers = ( \frac{52}{3} \div 4) = ( \frac{52}{3} \times \frac{1}{4} ) = \frac{13}{3} =4 \frac{1}{3}$$
$$Hence, the \: average \: of \: the \: given \: numbers \: is \: 4 \frac{1}{3}$$
$$\large\boxed{{Extra\: information:-}}$$
$$Average = \frac{sum \: of \: the \: given \: numbers}{number \: of \: observations}$$
$$Average \: of \: given \: numbers = \frac{sum \: of \: the \: given \: numbers}{numbers \: of \: these \: numbers}$$