Math, asked by mohamedaymen2072002, 4 months ago

Find the average value of the function f(x)=e^2x+1/e^x on the interval [0,ln⁡2].

Answers

Answered by Anonymous
5

Given function,

 \sf f(x) =  {e}^{2x}  +  \dfrac{1}{ {e}^{x} }

We have to find the average value of the function from [0, In(2)].

Average of a function can be calculated by :

 \star  \: \boxed{ \boxed{ \displaystyle \sf \overline{f(x)} =  \dfrac{1}{b - a}  \int_{a}^{b} f(x)dx}}

Now,

 \longrightarrow \displaystyle \sf \overline{f(x)} =  \dfrac{1}{ ln(2)  - 0}  \int_{0}^{ ln(2) } \bigg(  {e}^{2x}  +  \dfrac{1}{ {e}^{x} }  \bigg)dx \\  \\  \longrightarrow \displaystyle \sf \overline{f(x)} =  \dfrac{1}{ ln(2)}    \bigg( \dfrac{ {e}^{2x} }{2} -  \dfrac{1}{ {e}^{x} }   \bigg)  \bigg|_{0}^{ ln(2) } \\  \\   \longrightarrow \displaystyle \sf \overline{f(x)} =  \dfrac{1}{ ln(2)} \bigg( \dfrac{ {e}^{2 ln(2) }   }{2}  -  \dfrac{1}{ {e}^{ ln(2) } }   -  \dfrac{ {e}^{0} }{2} +  \dfrac{1}{ {e}^{0} }  \bigg) \\  \\   \longrightarrow \displaystyle \sf \overline{f(x)} =  \dfrac{1}{ ln(2)} \{2 -  \dfrac{1}{2}  +  1 - 1 \} \\  \\   \longrightarrow \displaystyle \sf  \boxed{ \boxed{ \sf\overline{f(x)} =  \dfrac{3}{2ln(2)}}}

The average value of the above function is 1.03

Answered by CopyThat
7

The average value will be 1.03

Go through the attachment for the explanation.

Attachments:
Similar questions