Math, asked by bk2523505, 18 days ago

Find the base of a triangle having area 20sqcm, if its height is 8 cm.​

Answers

Answered by prachibarapatre
2

Answer:

The base of the triangle will be 5 cm

Step-by-step explanation:

Here the area and the height of the triangle is given to be 20 cm² and 8 cm respectively

We have to find the value of base of the triangle

Now, for a triangle the area is given by half the product of its base and height

area of triangle = (1/2) × base × height

20 = (1/2) × base × 8

20 = 4 × base

base = 20/4

base = 5 cm

Answered by TheAestheticBoy
9

Question :-

  • Find the Base of Triangle having Area 20 cm² and Height 8 cm .

⠀⠀⠀⠀⠀

Answer :-

  • Base of Triangle is 5 cm .

⠀⠀⠀⠀⠀

Explanation :-

  • Here, Area of Rectangle is given 20 cm . Height is 8 cm . And, we have to calculate the Base of Triangle .

⠀⠀⠀⠀⠀

Formula Required :-

  •  \sf{ Area \: _{Traingle} =  \frac{1}{2} \times Base \times Height } \\

⠀⠀⠀⠀⠀

By substituting the values :-

 \Longrightarrow \: \:  \:   \sf{ 20  \: = \:   \frac{1}{2}  \:  \times \: Base \times \:  8} \\

 \Longrightarrow \:  \:  \:  \sf{20  \:  =  \:  \frac{1}{1}  \:  \times \: Base \:  \times 4 } \\

 \Longrightarrow \:  \:  \:  \sf{Base \:  =  \:  \frac{20}{4} } \\

 \Longrightarrow \:  \:  \:  \sf{Base \:  =  \: 5 \: cm}

⠀⠀⠀⠀⠀

Hence :-

  • Base = 5 cm .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Similar questions