Find the base of an isosceles triangle whose area is 60m2 and length of equal sides is 13 cm
Answers
The area of isosceles Triangle=60m²
The length of each sides=13cm
Draw a perpendicular AD which is on BC with height H that's why BD=CD in isoceles traiangle ABD
Now , using pathagoras theorem
AB²=AD²+BD²
Here AB=60 AD=h BD=X
13²=h²+X²-------1
Similarly, find the area of traiangle ABC
Area=1/2×base×height
60=1/2×2X×h
120=2Xh------(2)
Adding equation 1 and 2 here
13²+120=h²+X²+2Xh
here , using identity
(a+b)²=a²+b²+2ab
169+120=(h+X)²
289=(h+X)²
√289=h+X
h+X=17
Solving it now
h=17-x
Now put the value of X in EQ 2
120=2X(17-X)
120=34X-2X²
Dividing by 2 on both sides here
X²-17X+60=0
Splitting the middle term here
X²-12X-5X+60=0
X(X-12)-5(X-12)=0
(X-5)(X-12)=0
SO,X=5 , 12
Now, putting the value of X=12 in EQ 2
120=2Xh
120=24h
h=5m
Here h=AD=5m BC=BD+CD=2X=2×12=24m
Hence,
The perpendicular of traiangle=5m
The base of isoceles traiangle=24m
AnswEr:-
Base of isosceles triangle =10 cm or 24 cm
Given:-
• Area of isosceles ∆ = 60 cm²
• Length of each equal sides = 13 cm
To find:-
• Base of isosceles triangle = ?
Solution:-
As we know,
☛
Here, a = each equal side & b = inequal side(base)
- Putting all values :-
⇒ 60 = (b/4) √[(4 × 13²) - b²]
⇒ 60 = (b/4) √[4 × 169 - b²]
⇒ 60 = (b/4) √[676 - b²]
⇒ 60 = (b/4) √[26² - b²]
⇒ 60 × 4/b = √[676 - b²]
⇒ 240/b = √[676 - b²]
⇒ (240/b)² = 676 - b²
⇒ 57600/b² = 676 - b²
⇒ 57600 = 676b² - b⁴
⇒ 57600 - 676b² + b⁴ = 0
⇒ b⁴ - 676b² + 57600 = 0
⇒ b⁴ - 100b² - 576b² + 57600 = 0
⇒ b²(b² - 100) - 576(b² - 100) = 0
⇒ (b² - 100)(b² - 576) = 0
⇒ b² = 100 or b² = 576
⇒ b = √100 or b =√576
⇒ b = 10 or, b = 24
Therefore,