Math, asked by arpanakumari5789955, 16 days ago

find the base of parallelogram whose area is 320cm and height 8cm​

Answers

Answered by Anonymous
17

Given : Area of the Parallelogram is 320 cm and the Height is 8 cm .

 \\ \\

To Find : Find the Base of the Parallelogram

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}

 \\ \\

 \maltese Calculating the Base :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = Base \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 320 = Base \times 8 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{320}{8} = Base } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{320}{8} = Base } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; {\underline{\boxed{\purple{\pmb{\frak{ Base = 40 \; cm }}}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Base of the Parallelogram is 40 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by sujal23805
3

Answer:

Given : Area of the Parallelogram is 320 cm and the Height is 8 cm .

\begin{gathered} \\ \\ \end{gathered}

To Find : Find the Base of the Parallelogram

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

SolutioN :

\maltese✠ Formula Used :

{\underline{\boxed{\pmb{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}

Area

(Parallelogram)

=Base×Height

Area

(Parallelogram)

=Base×Height

\begin{gathered} \\ \\ \end{gathered}

\maltese✠ Calculating the Base :

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = Base \times Height } \\ \\ \\ \end{gathered} \end{gathered}

⟶Area=Base×Height

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 320 = Base \times 8 } \\ \\ \\ \end{gathered} \end{gathered}

⟶320=Base×8

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{320}{8} = Base } \\ \\ \\ \end{gathered} \end{gathered}

8

320

=Base

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{320}{8} = Base } \\ \\ \\ \end{gathered} \end{gathered}

8

320

=Base

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; {\underline{\boxed{\purple{\pmb{\frak{ Base = 40 \; cm }}}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered} \end{gathered}

Base=40cm

Base=40cm

\begin{gathered} \\ \\ \end{gathered}

\therefore \;∴ Base of the Parallelogram is 40 cm .

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

Similar questions