find the base of parallelogram whose area is 320cm and height 8cm
Answers
Given : Area of the Parallelogram is 320 cm and the Height is 8 cm .
To Find : Find the Base of the Parallelogram
SolutioN :
Formula Used :
Calculating the Base :
Base of the Parallelogram is 40 cm .
Answer:
Given : Area of the Parallelogram is 320 cm and the Height is 8 cm .
\begin{gathered} \\ \\ \end{gathered}
To Find : Find the Base of the Parallelogram
\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}
SolutioN :
\maltese✠ Formula Used :
{\underline{\boxed{\pmb{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}
Area
(Parallelogram)
=Base×Height
Area
(Parallelogram)
=Base×Height
\begin{gathered} \\ \\ \end{gathered}
\maltese✠ Calculating the Base :
\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = Base \times Height } \\ \\ \\ \end{gathered} \end{gathered}
⟶Area=Base×Height
\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 320 = Base \times 8 } \\ \\ \\ \end{gathered} \end{gathered}
⟶320=Base×8
\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{320}{8} = Base } \\ \\ \\ \end{gathered} \end{gathered}
⟶
8
320
=Base
\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{320}{8} = Base } \\ \\ \\ \end{gathered} \end{gathered}
⟶
8
320
=Base
\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; {\underline{\boxed{\purple{\pmb{\frak{ Base = 40 \; cm }}}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered} \end{gathered}
⟶
Base=40cm
Base=40cm
★
\begin{gathered} \\ \\ \end{gathered}
\therefore \;∴ Base of the Parallelogram is 40 cm .
\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}