Math, asked by subhra173, 23 hours ago

Find the breadth of a rectangle whose

Perimeter = 550m

Length = 170m​

Answers

Answered by Anonymous
23

Given :

  • Perimeter of Rectangle = 550 m
  • Length of Rectangle = 170 m

 \\ \\

To Find :

  • Breadth of Rectangle = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\sf{ Perimeter {\small_{(Rectangle)}} = 2 \bigg( Length + Breadth \bigg) }}}}

 \\ \\

 \dag Calculating the Breadth :

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { Perimeter = 2 \bigg( Length + Breadth \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { 550 = 2 \bigg( 170 + Breadth \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { 550 = 340 + 2 \times Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { 550 - 340 = 2 \times Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { 210 = 2 \times Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { \dfrac{210}{2} = Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; \sf { \cancel\dfrac{210}{2} = Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow  \; \; {\underline{\boxed{\pmb{\pink{\sf { Breadth = 105 \; m }}}}}} \; \bigstar \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Breadth of the Rectangle is 105 m .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions