Math, asked by thakuranaayasingh, 4 months ago

find the breadth of the rectangle whose perimeter are are 28 cm and length is is 10 cm​

Answers

Answered by suraj5070
465

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt Find\: the\: breadth\: of\: the\: rectangle\: whose\: perimeter\\\tt are\: 28\: cm \:and \:length\: is\:10 \:cm

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Perimeter \:of \:the \:rectangle(P) =28\:cm
  •  \sf \bf Length \:of \:the \:rectangle(l) =10\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Breadth \:of \:the \:rectangle

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\sf Breadth \:of \:the \:rectangle}}}

 {\blue {\boxed {\boxed {\boxed {\green {\sf \bf P=2(l+b)}}}}}}

  •  \sf P= perimeter \:of \:the \:rectangle
  •  \sf l= length \:of \:the \:rectangle
  •  \sf b= breadth \:of \:the \:rectangle

 {\underbrace {\overbrace {\orange {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 28=2\Big(10+b\Big)

 \sf \bf \implies 28=20+2b

 \sf \bf \implies 28-20=2b

 \sf \bf \implies 8=2b

 \sf \bf \implies b=\dfrac{8}{2}

 \sf \bf \implies b=\dfrac{\cancel{8}}{\cancel{2}}

 \implies {\orange {\boxed {\boxed {\purple {\mathfrak {b=4\:cm}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\sf \therefore The\:breadth \:of \:the \:rectangle \:is \:4\:cm}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Area\:of \:the \:rectangle = lb

 \bf Perimeter \:of \:the \:rectangle = 2(l+b)

Answered by prabhatrbi
1

b = ( P/2 ) - l = ( 28/2 ) - 10 = 4cm

Similar questions