Math, asked by dummy8626, 1 year ago

Find the C.S.A and T.S.A of a cylinder the diameter of whose base is 7cm and height is 60 cm

Answers

Answered by Somya11111
0
csa = 1320
tsa = 1394
Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=1320\:cm}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=1397\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 3.5\: cm} \\ \\ : \implies \text{Height(h) = 60 \: cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{C.S.A \: of \: cylinder = ? }\\ \\ : \implies \text{T.S.A\: of \: cylinder = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ : \implies \text{C.S.A\: of \: cylinder} =2\pi rh \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times \frac{ 22}{7} \times 3.5\times 60 \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times 22 \times 30 \\ \\ \green{ : \implies \text{C.S.A\: of \: cylinder} =1320 \: {cm}^{2}} \\ \\ \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times \frac{22}{7} \times 3.5(60 + 3.5) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times 22 \times 31.75 \\ \\ \green{ : \implies \text{T.S.A\: of \: cylinder} =1397 \: {cm}^{2} }

Similar questions