Math, asked by teja8556, 1 year ago

Find the c.s.a of the cone whose slant height is 10 cm and radius of the base is 7 cm

Answers

Answered by yashika7011
1

Answer:

C. s. a =πrl

=22/7×7×10

=220 cm sq.

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{C.S.A\:of\:cone=220\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 7 \: cm} \\ \\ : \implies \text{Slant\:height(l) = 10 \: cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{C.S.A\: of \: cone = ?}

• According to given question :

  \bold{As \: we \: know \: that \: C.S.A \: of \: cone}\\ : \implies \text{C.S.A\: of \: cone} = \pi rl \\ \\ : \implies \text{C.S.A \: of \: cone} = \frac{22}{7} \times 7 \times 10\\ \\ : \implies \text{C.S.A \: of \: cone} =22 \times  10\\ \\ \green{ : \implies \text{C.S.A\: of \: cone} =220\: {cm}}^{2}

 \purple {\text {some \: formula \: related \: to \: this \: topic}} \\   \pink{\circ \:  \text{t.s.a \: of \: cone =} \pi rl + \pi {r}^{2} } \\  \\ \pink{\circ \:  \text{volume \: of \: cone =} \frac{1}{3}  \pi {r}^{2} h}

Similar questions