Math, asked by sanofarmn078600, 11 months ago

find the capacity in litres of a conical vessel with height 12vmslant height 13cm​

Answers

Answered by Brâiñlynêha
16

\huge\mathbb{SOLUTION:-}

\bold{Given:-}\begin{cases}\sf{Slant\: height\:of\:cone=13cm}\\ \sf{Height=12cm}\end{cases}

\bf\underline{\underline{Step\:By\:Step\: Explanation:-}}

  • We have to find the capacity of vessel means the volume of vessel

  • The vessel is in the form of cone now the volume of cone is

\boxed{\sf{Volume\:of\:cone=\frac{1}{3}\pi r{}^{2}h}}

  • First find the radius of vessel

  • Now the radius

\boxed{\sf{l{}^{2}=r{}^{2}+h{}^{2}}}

\tt\implies (13){}^{2}=r{}^{2}+(12){}^{2}\\ \\ \tt\implies 169=r{}^{2}+144\\ \\ \tt\implies 169-144=r{}^{2}\\ \\ \tt\implies 25=r{}^{2}\\ \\ \tt\implies r=\sqrt{25}\\ \\ \sf\implies radius=5cm

  • The radius of vessel is 5cm

  • Now the volume

\sf\implies Volume\:of\:vessel=\frac{1}{\cancel3}\times \frac{22}{7}\times 5\times 5\times  \cancel{12}\\ \\ \sf\implies Volume=\frac{22\times 5\times 5\times 4}{7}\\ \\ \sf\implies Volume= \cancel{\frac{2200}{7}}\\ \\ \sf\implies Volume\:of\:vessel=314.28cm{}^{3}

  • Now in litre

  • \sf\implies 1cm{}^{3}=\frac{1}{1000}l

\sf\implies 314.28cm{}^{3}=\frac{314.28}{1000}\\ \\ \sf\implies 0.31428litre

\boxed{\sf{Capacity\:of\:vessel=0.31428litre}}

Answered by FIREBIRD
7

Answer:

Capacity Of Cone = 0.314 L

Step-by-step explanation:

We Have :-

Height = 12 cm

Slant Height = 13 cm

To Find :-

Capacity/Volume of Conical Vessel

Formula Used :-

Volume of Cone = π r² h/3

Slant height² = Height² + Radius²

Solution :-

13^{2}=12^{2} +radius^{2}  \\\\169 = 144 + radius^{2} \\\\radius^{2} = 25\\ \\radius = 5cm\\\\Volume = \frac{3.14 * 5 * 5 * 12}{3} \\\\= 3.14*25*4\\\\= 314cm^{3}

1cm^{3}= 0.001L \\\\314 cm^{3}= 0.001*314 L\\ \\= 0.314 L

Capacity of Cone = 0.314L

Similar questions