Math, asked by jasmineraghuwanshi, 5 days ago

Find the capacity in litres of a conical vessel with(i) radius7 cm, slant height 25 cm (ii) height 12 cm , slant height 13 cm​

Answers

Answered by StarFighter
2

Answer:

Given :-

(i) Radius 7 cm, slant height 25 cm

(ii) Height 12 cm, slant height 13 cm

To Find :-

  • What is the capacity in litres of a conical vessel.

Formula Used :-

\clubsuit Volume of Cone Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}}}\: \: \: \bigstar\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

Solution :-

(i) Radius 7 cm, slant height 25 cm :

First, we have to find the height :

Given :

  • Radius = 7 cm
  • Slant Height = 25 cm

According to the question by using the formula we get,

\implies \bf (l)^2 =\: (r)^2 + (h)^2

where,

  • l = Slant Height
  • r = Radius
  • h = Height

By putting the values we get,

\implies \sf (25)^2 =\: (7)^2 + (h)^2

\implies \sf 625 =\: 49 + (h)^2

\implies \sf 625 - 49 =\: h^2

\implies \sf 576 =\: h^2

\implies \sf \sqrt{576} =\: h

\implies \sf 24 =\: h

\implies \sf\bold{\purple{h =\: 24\: cm}}

Now, we have to find the capacity of a conical vessel :

Given :

  • Radius = 7 cm
  • Height = 24 cm

According to the question by using the formula we get,

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{1}{3} \times \dfrac{22}{7} \times (7)^2 \times 24\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{22}{21} \times 49 \times 24\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{22}{21} \times 1176\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{25872}{21}\\

\implies \sf\bold{\green{Capacity_{(Conical\:  Vessel)} =\: 1232\: cm^3}}\\

Now, we have to convert the capacity of a conical vessel into litres :

\leadsto \sf 1232\: cm^3\\

\leadsto \sf \dfrac{1232}{1000}\: litres

\leadsto \sf\bold{\red{1.232\: litres}}\\

\therefore The capacity of a conical vessel is 1.232 litres .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

(ii) Height 12 cm, slant height 13 cm :

First, we have to find the radius :

Given :

  • Height = 12 cm
  • Slant Height = 13 cm

According to the question by using the formula we get,

\implies \bf (l)^2 =\: (r)^2 + (h)^2\\

\implies \sf (13)^2 =\: (r)^2 + (12)^2

\implies \sf 169 =\: r^2 + 144

\implies \sf 169 - 144 =\: r^2

\implies \sf 25 =\: r^2

\implies \sf \sqrt{25} =\: r

\implies \sf 5 =\: r

\implies \sf\bold{\purple{r =\: 5\: cm}}

Now, we have to find the capacity of a conical vessel :

Given :

  • Radius = 5 cm
  • Height = 12 cm

According to the question by using the formula we get,

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{1}{3} \times \dfrac{22}{7} \times (5)^2 \times 12\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{22}{21} \times 25 \times 12\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{22}{21} \times 300\\

\implies \sf Capacity_{(Conical\: Vessel)} =\: \dfrac{6600}{21}

\implies \sf\bold{\blue{Capacity_{(Conical\:  Vessel)} =\: 314.28\: cm^3}}\\

Now, we have to convert the capacity of a conical vessel into litres :

\leadsto \sf 314.28\: cm^3

\leadsto \sf \dfrac{314.28}{1000}\: litres

\leadsto \sf\bold{\red{0.31428\: litres}}\\

\therefore The capacity of a conical vessel is 0.31428 litres .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions