Math, asked by devanshikrana, 4 months ago

find the capacity of cylinder water tank in liters whose radius is 7m meters and height is 2m​

Answers

Answered by Anonymous
29

Given: The radius of cylinder is 7m and the height of cylinder is 2m.

Need to find: The capacity of cylinder water tank in liters

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

We know that if we are given with the radius of cylinder and the height of cylinder, we have the required formula, that is,

\sf{:\implies Volume_{(cylinder)} = \pi {r}^{2}h}

⠀⠀⠀⠀ Here the value of π is 22/7, r is the radius of cylinder and h is the height of cylinder. And here in this question we have r = 7m and h = 2m. So, by using the required formula we can find volume or capacity of cylinder water tank.

By using the required formula and substituting all the given values in the formula, we get:

\sf{:\implies Volume_{(cylinder)} = \dfrac{22}{7} \times {(7)}^{2} \times 2} \\  \\  \\ \sf{:\implies Volume_{(cylinder)} = \frac{22}{ \cancel{ \: 7 \: }} \times \cancel{ \: 7 \: } \times 7 \times 2} \\  \\  \\ \sf{:\implies Volume_{(cylinder)} = 22 \times 7 \times 2} \\  \\  \\ \sf{:\implies Volume_{(cylinder)} = 154 \times 2} \\  \\  \\ \sf{:\implies \boxed{ \frak{ \red{Volume_{(cylinder)} = 308}}}}

Now,

\underline{\bf{\dag \: }\frak{ \: As \: we \: know \: that \: :}}

→ 1 cubic m = 1000 l

→ 308 cubic m = 1000 × 308

→ 308 cubic m = 308000 l.

∴ The capacity of cylinder water tank in liters is 308000 liters.

Answered by Anonymous
48

\begin{gathered}\begin{gathered}\sf Given -  \begin{cases} &\sf The\:redius \:of\:the\:cylinder  \:is\:= \frak{7\:m}\\ & \sf Height \:of\: cylinder \:is \:=\:\frak{2\: m} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf To \:  Find -   \begin{cases} &\sf The\: capacity \:of \:cylinder \:water\: tank \end{cases}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

❍We know that:-

\dag\;\boxed{\frak{\pink{Volume _{\:(Cylinder )} = πr^2h}}}

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Substituting\; Values\; :}}⠀⠀⠀

\sf{:\implies Volume= \dfrac{22}{7} \times {(7)}^{2} \times 2}\\\\

\sf{:\implies Volume = \dfrac{22}{7} \times 49 \times 2} \\\\

 \sf{:\implies Volume= 22 \times 7 \times 2} \\\\

 \sf{:\implies Volume_= 154 \times 2}\\\\

 \sf{:\implies Volume= 308\:{cm}^{3}}\\\\

:\implies  \underline{ \boxed{\sf Volume  =  308000\:  liters}}    \\\\

\underline{\star {\mathrm{\purple {  The \: capacity   \:of\:the \:cylinder \:is\: =308000  \: liters }}}}\\

\\

\large { \boxed {\mathrm |\:\:{\underline {More \:To\:Know\:-:}}\:\:|}}

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube =
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²

⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀


Anonymous: Noiceeeee Very Noiceeeeeeeee !
Similar questions