Find the cardinal number of set P = {x : x = 3n+2, n∈W and x< 15}
Answers
P = {x : x = 3n+2, n∈W and x< 15}
For x < 15, n ∈ W :
3n + 2 < 15
3n < 15 - 2
3n < 13
n < 13/3
n < 4.3
Since n has to a natural number, n can only be 1, 2, 3 or 4
⇒ There are 4 elements
Answer: n(P) = 4
Hi ,
It is given that ,
P = { x:x = 3n + 2 ,n € W and x<15 }
Here , x = { 1 , 2 , 3 , .....,14 }
x = 3n + 2
=> 3n + 2 = x
=> 3n = x - 2
n = ( x - 2 )/3 -----( 1 )
___________________
x | n = ( x - 2 )/3 | n € W
____________________
1 | n = (1-2)/3=-1/2 | false
____________________
2| n=(2-2)/3=o | True
____________________
3 | n=(3-2)/3=1/3| false
____________________
4 | n=(4-2)/3=2/3| false
____________________
5 | n=(5-2)/3=3/3 = 1 | True
____________________
6 | n=(6-2)/3=4/2 | false
____________________
7| n = (7-2)/3=5/2 | false
_____________________
8 | n = (8-2)/3 =6/3 = 2 |true
_____________________
9 | n = (9-2)/3=7/3 | false
_____________________
10| n=(10-2)/3 = 8/3 | false
_____________________
11 | n = (11-2)/3=9/3 = 3 | true
_____________________
12 | n = (12-2)/3 = 10/3 | false
_____________________
14 | n = ( 13-2)/3 = 11/3 | false
______________________
Therefore ,
P ={ 2 , 5 , 8 , 11 }
Cardinal number of Set P
= n( P ) = 4
I hope this helps you.
: )