Math, asked by snjeevverma7936, 1 year ago

Find the cartesian equation of the locus of z in the complex plane satisfying |z-4| + |z+4| = 16

Answers

Answered by MaheswariS
10

Answer:

\frac{x^2}{64}+\frac{y^2}{48}=1

Step-by-step explanation:

|z-4| + |z+4| = 16


Let z=x+iy


Then

|(x+iy)-4|+|(x+iy)+4|=16


|(x-4)+iy|+|(x+4)+iy|=16

\sqrt{(x-4)^2+y^2}+\sqrt{(x+4)^2+y^2}=16\\\sqrt{(x-4)^2+y^2}=16-\sqrt{(x+4)^2+y^2}

squaring on both sides

(x-4)^2+y^2=256+(x+4)^2+y^2-32\sqrt{(x+4)^2+y^2}\\(x-4)^2+y^2=256+(x+4)^2+y^2-32\sqrt{(x+4)^2+y^2}

cancelling like terms on both sides

we get

(x-4)^2=256+(x+4)^2-32\sqrt{(x+4)^2+y^2}\\x^2+16-8x=256+x^2+16+8x-32\sqrt{(x+4)^2+y^2}

-8x=256+8x-32\sqrt{(x+4)^2+y^2}\\32\sqrt{(x+4)^2+y^2}=256+16x\\32\sqrt{(x+4)^2+y^2}=16(x+16)\\2\sqrt{(x+4)^2+y^2}=x+16

squaring on both sides

4[(x+4)^2+y^2]=(x+16)^2\\4[x^2+16+8x+y^2]=x^2+256+32x\\4x^2+64+32x+4y^2=x^2+256+32x

rearranging terms we get

3x^2+4y^2=192

\frac{x^2}{64}+\frac{y^2}{48}=1

This equation represents an ellipse.

Therefore the locus of z is an ellipse.



Answered by sonabrainly
4

Answer:

Step-by-step explanation:

find the answer below

Attachments:
Similar questions