Math, asked by ishikaojha0004, 3 months ago

find the center and radius of the circle x²+y²-6x+4y-36=0​

Answers

Answered by Steph0303
4

Answer:

The general equation of a circle is given as:

⇒ x² + y² + 2gx + 2fy + c = 0

According to this equation,

  • x-coordinate of center = -g
  • y-coordinate of center = -f
  • Radius of the circle = √ ( g² + f² - c )

The given equation in the question is:

  • x² + y² - 6x + 4y - 36 = 0    ...(i)

Comparing (i) with the general equation we get:

⇒ 2g = -6

⇒ g = -6/2 = -3

-g = -(-3) = 3

Similarly,

⇒ 2f  = 4

⇒ f = 4/2 = 2

-f = -2

Radius of the circle is:

⇒ r = √ ( g² + f² - c )

⇒ r = √ [ 9 + 4 - (- 36 )]

⇒ r = √ 49 = 7 units

Hence the center of the circle is ( 3, -2 ) and radius of the circle is 7 units.

Answered by ItzShinyQueenn
2

 \bf{ \underline{ \underline{Given :- }}}

• \:  {x}^{2}  +  {y}^{2}  - 6x + 4y - 36 = 0

 \sf In \:  the  \: equation,

• \: \sf x-coordinate  \: of \:  center = -g

•  \: \sf y - coordinate \:  of  \: center = -f

•   \: \sf radius \:  of  \: the \:  circle =  \sqrt{ {g}^{2} +  {f}^{2} - c  }

 \\

 \sf According  \: to \:  the \:  given \:  equation,

 \sf - 2g =  - 6

 \sf \rightarrow  - g = - 3

 \sf \rightarrow g = 3

 \sf \: And  ,

 \sf - 2f =4

 \sf \rightarrow f = -  2

 \sf \: And  \: also,

 \sf c =  - 36

 \therefore  \sf Radius  \: of \:  the  \: circle \: (r)  = \sqrt{ {g}^{2}  +  {f}^{2}  - c}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \sqrt{ {3}^{2}  +  {2}^{2} - ( - 36 )}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \sqrt{9 + 4 + 36}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \sqrt{49}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 7

 \sf \red{Therefore,  \: the \:  radius  \: of  \: the \:  circle  \: is \:  7  \: units \:  and} \\     \sf \red{the  \: center \:  of \:  the  \: circle  \: is \:  (3, -2).}

Similar questions