Math, asked by pv8447424, 5 months ago

find the center of curvature of hyperbola x^2/a^2 - y^2/b^2=1​

Answers

Answered by shrutinemane1
2

Given hyperbola:x2−y2=1--------------------------(3)

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola be

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is 

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is T:1xsecθ−1ytanθ=1-------------------------(1)

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is T:1xsecθ−1ytanθ=1-------------------------(1)Now, CM=⊥ar distance from (0,0) to T

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is T:1xsecθ−1ytanθ=1-------------------------(1)Now, CM=⊥ar distance from (0,0) to TCMˉ=sec2θ+tan2θ∣0−0−1∣=sec2θ+tan2θ1

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is T:1xsecθ−1ytanθ=1-------------------------(1)Now, CM=⊥ar distance from (0,0) to TCMˉ=sec2θ+tan2θ∣0−0−1∣=sec2θ+tan2θ1Foot of ⊥ar from (0,0)at T: 1h−0=1k−0=(sec2θ+tan2θ)2−1

Given hyperbola:x2−y2=1--------------------------(3)Here a=1,b=1⊥ar drawn from C meets the tangent at M and curve at N.Let the point P on the hyperbola beP(secθ,tanθ)equation of tangent from P is T:1xsecθ−1ytanθ=1-------------------------(1)Now, CM=⊥ar distance from (0,0) to TCMˉ=sec2θ+tan2θ∣0−0−1∣=sec2θ+tan2θ1Foot of ⊥ar from (0,0)at T: 1h−0=1k−0=(sec2θ+tan2θ)2−1M:((sec2θ+tan2

Plz mark as brainiest

Answered by TheBrainlyKing1
1

Step-by-step explanation:

Given hyperbola:x

2

−y

2

=1--------------------------(3)

Here a=1,b=1

ar

drawn from C meets the tangent at M and curve at N.

Let the point P on the hyperbola be

P(secθ,tanθ)

equation of tangent from P is

T:

1

xsecθ

1

ytanθ

=1-------------------------(1)

Now, CM=⊥

ar

distance from (0,0) to T

CM

ˉ

=

sec

2

θ+tan

2

θ

∣0−0−1∣

=

sec

2

θ+tan

2

θ

1

Foot of ⊥

ar

from (0,0)at T:

1

h−0

=

1

k−0

=

(

sec

2

θ+tan

2

θ

)

2

−1

M:(

(

sec

2

θ+tan

2

θ

)

2

−1

,

(

sec

2

θ+tan

2

θ

)

2

−1

):

sec

2

θ+tan

2

θ

−1

,

sec

2

θ+tan

2

θ

−1

Line passing through(0,0) and M ⇒(y−0)=

secθ

−tanθ

(x−0)[Slope=

SlopeofT

−1

] (as this line is perpendicular to T)

⇒secθy=−tanθx

----------------------------(2)

Coordinates of N (intersecting equation (1) and (3)⇒x

2

sec

2

θ

tan

2

θ

x

2

=1

⇒x

2

(

sec

2

θ

1

)=1

x=±secθ&y=±tanθ).

CN=

sec

2

θ+tan

2

θ

---------------(5)

Now CM.CN=

sec

2

θ+tan

2

θ

1

.

sec

2

θ+tan

2

θ

(from equation (4) and (5)

CM.CN=1.

Similar questions