Find the center of mass of a uniform semicircular ring of radius r and mass m
Answers
Answer:
Answer
As the wire is uniform, the mass per unit length of the wire is
πR
M
. The mass of the element is, therefore,
d m =
M
)(Rdθ)=
π
M
dθ
The coordinates of the center of mass are
X =
Explanation:
As the wire is uniform, the mass per unit length of the wire is \dfrac{M}{\pi R}
πRM . The mass of the element is, therefore,
d m = \left( \dfrac { M } { \pi R } \right) ( R d \theta ) = \dfrac { M } { \pi } d \thetadm=(
πR
M
)(Rdθ)=
π
M
dθ
The coordinates of the center of mass are
X = \dfrac { 1 } { M } \int x d m = \dfrac { 1 } { M } \int _ { 0 } ^ { \pi } ( R \cos \theta ) \left( \dfrac { M } { \pi } \right) d \theta = 0X=
M
1
∫xdm=
M
1
∫
0
π
(Rcosθ)(
π
M
)dθ=0
Y = \dfrac { 1 } { M } \int y d m = \dfrac { 1 } { M } \int _ { 0 } ^ { \pi } ( R \sin \theta ) \left( \dfrac { M } { \pi } \right) d \theta = \dfrac { 2 R } { \pi }Y=
M
1
∫ydm=
M
1
∫
0
π
(Rsinθ)(
π
M
)dθ=
π
2R
Hence, position of center of mass, \left( 0,\,\dfrac{2R}{\pi } \right)(0,
π
2R
)