Math, asked by akshaya7970, 1 year ago

find the central angle if length of Arc is equal to 44 metre and radius is equal to 35 metre ​

Answers

Answered by abdul9838
4

 <b> <body \: bgcolor = "skyblue">

 \bf \blue{hey \: user \: here \: is \: answer} \\  \\   \bf \green{ \huge \: solution} \\  \\   \bf \pink{ \underline{ \boxed{ \bf \: according \: to \: question}}} \\  \\  \: \bf \pink{given \: that} \\  \\  \bf \orange{length \: of \: arc \: (l) =44 \: m } \\   \\   \bf \pink{}\\ \\  \bf \red{r = 35 \: m} \\  \\ \bf \purple{ using \: this \: formula} \\  \\  \bf \pink{length \: of \: arc = 2\pi \: r \:  \frac{ϑ}{360} }  \\  \\  \bf \pink{44 = 2 \times  \frac{22}{7} \times 35 \times  \frac{ϑ}{360}  } \\  \\  \bf \pink{44 =  \frac{2 \times2 2}{ \cancel{7}}  \times  \cancel{7 } \times 5 \times  \frac{ϑ}{360} } \\  \\ \bf \pink{ \frac{44}{2 \times 22 \times 5}   =  \frac{ϑ}{360} } \\  \\  \bf \pink{ \frac{44}{44 \times 5} =  \frac{ϑ}{360}  } \\  \\  \bf \pink{ \frac{ \cancel{44}}{ \cancel{44} \times 5}  =  \frac{ϑ}{360}  } \\  \\  \bf \pink{ \frac{1}{5}  =  \frac{ϑ}{360} } \\  \\  \bf \pink{5 \:ϑ = 360 } \\  \\  \bf \pink{ϑ =  \frac{360}{5} } \\  \\  \bf \pink{ϑ = 72 \degree} \\  \\  \\  \bf \red{ \therefore \: answer \: is72 \degree \: } \\  \\


akshaya7970: thank you very much bro
abdul9838: make it brainliest
MrReporter11: @report @karega @ma @chuddunga
@yaad @rakhiyo
MrReporter11: @behn @ke @luund
@teti @ma @ki @chuut
@me
@kutta
@di @luund @ma @marale
MrReporter11: @behn @ke @luund
@behn @ke @luund
@teri @ma @ki @chuut
@loode @auukatt @me @rehle
@ma @chhodynga
@ma @choodungaa
Answered by MrReporter11
0

Answer:

TERI LUUND KAAT DUNGAA

Step-by-step explanation:

@report @karega @ma @chuddunga

@yaad @rakhiyo

@behn @ke @luund

@teti @ma @ki @chuut

@me

@kutta

@di @luund @ma @marale

@behn @ke @luund

@behn @ke @luund

@teri @ma @ki @chuut

@loode @auukatt @me @rehle

@ma @chhodynga

@ma @choodungaa

Similar questions