Math, asked by prathikantamindu, 1 month ago

find the centre and radius of circle given
with equation 3x^2+3y^-5x-6y+4 ​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

The given equation of circle is 3{x}^{2}+3{y}^{2}-5x-6y+4=0\\

 \implies \: {x}^{2}+{y}^{2}- \frac{5}{3} x- \frac{6}{3} y+ \frac{4}{3} =0 \\

 \implies \: {x}^{2}+{y}^{2}- \frac{5}{3} x- 2y+ \frac{4}{3} =0 \\

Here, g=-\frac{5}{6} and f=-1

So,

center be C

C \equiv( - g  ,- f)

C \equiv \bigg(  \frac{5}{6}   ,1\bigg) \\

Radius be R,

R =  \sqrt{ \bigg( \frac{5}{6} \bigg)^{2} + (1)^{2} -  \frac{4}{3}   }  \\

 \implies \: R =  \sqrt{  \frac{25}{36}  + 1 -  \frac{4}{3}   }  \\

 \implies \: R =  \sqrt{  \frac{25}{36}  +   \frac{3 - 4}{3}   }  \\

 \implies \: R =  \sqrt{  \frac{25}{36}   -    \frac{1}{3}   }  \\

 \implies \: R =  \sqrt{  \frac{25 - 12}{36}      }  \\

 \implies \: R =  \sqrt{  \frac{13}{36}      }  \\

 \implies \: R =  \frac{ \sqrt{13} }{6}  \\

Answered by rakeshdubey33
0

Centre = (5/6, 1) and Radius = √(13) / 6.

Step-by-step explanation:

Given :

Equation of circle ;

3 {x}^{2}  + 3 {y}^{2}  - 5x - 6y + 4 = 0

To find :

The centre and radius of the circle.

Solution :

Divide throughout by 3 we have,

 {x}^{2}  +  {y}^{2}  -  \frac{5}{3}x - 2y  +  \frac{4}{3}  = 0

comparing it with,

 {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0

Here,

g =  -  \frac{5}{6}  \:  \: and \:  \: f =  - 1 \:  \:  \: and \:  \:  \: c \:  \:  =  \frac{4}{3}

Centre = (-g, -f)

i.e.

x co-ordinate of the centre = - (coefficient of x)/2

y co-ordinate of the centre = - (coefficient of y)/2

Therefore, centre =

( \frac{5}{6} , 1)

Radius =

 \sqrt{ {g}^{2}  -  {f}^{2}  - c}

=

 \sqrt{ {( \frac{ - 5}{6} )}^{2}  +  {( - 1)}^{2}  -  \frac{4}{3} }  \\  =  \sqrt{ \frac{25}{36}  + 1 -  \frac{4}{3} }  \\  =  \sqrt{ \frac{25 + 36 - 48}{36} }  \\  =  \frac{1}{6} \sqrt{13}

Hence, centre = (5/6, 1) and radius = (13) / 6.

Similar questions