Math, asked by annacasmir2006, 1 month ago

find the centre and radius of the circle whose equation is given by x2+y2-4x-8y-45 =0​

Answers

Answered by amansharma264
5

EXPLANATION.

Equation of the circle.

⇒ x² + y² - 4x - 8y - 45 = 0.

As we know that,

General equation of the circle.

⇒ x² + y² + 2gx + 2fy + c = 0.

Compare both the equations, we get.

Center of the circle = (-g,-f).

Center of the circle = (2,4).

Radius of the circle = √(g)² + (f)² - c.

⇒ √(2)² + (4)² - (-45).

⇒ √4 + 16 + 45.

⇒ √65.

Radius of the circle = √65.

                                                                                                                           

MORE INFORMATION.

General equation of the circle represents.

(1) = A real circle if, g² + f² - c > 0.

(2) = A point circle, if g² + f² - c = 0.

(3) = An imaginary circle, if g² + f² - c < 0.

Similar questions