Math, asked by boddapusiva9837, 1 year ago

Find the centre and radius or each of the following circles.
(i) x² + y² - 2x + 4y - 4 = 0
(ii) x² + y² - 6x - 8y - 24 = 0
(iii) 2x² + 2y² + 3x + 4y + 9/8 = 0
(iv) 4x² + 4y² - 24x - 8y - 24 = 0

Answers

Answered by AlokYadav100
0
b is the Central are radius
Answered by amitnrw
9

Answer:

Step-by-step explanation:

Find the centre and radius or each of the following circles.

(i) x² + y² - 2x + 4y - 4 = 0  

(ii) x² + y² - 6x - 8y - 24 = 0  

(iii) 2x² + 2y² + 3x + 4y + 9/8 = 0  

(iv) 4x² + 4y² - 24x - 8y - 24 = 0

Equation of circle

(x-a)² + (y-b)² = r²

a , b center

r = radius

(i) x² + y² - 2x + 4y - 4 = 0

x² + y² - 2x + 4y = 4

x² - 2x + 1  + y² + 4y + 4 = 4 + 1 + 4

(x-1)² + (y+2)² = 9

(x-1)² + (y+2)² = 3²

Center = (1 , -2)  Radius = 3

(ii) x² + y² - 6x - 8y - 24 = 0

=> x² + y² - 6x - 8y = 24

=> x² -6x + 9 + y² - 8y + 16 = 24 + 9 + 16

=> (x-3)³ + (y-4)² = 7²

Center = (3 , 4)  Radius = 7

(iii) 2x² + 2y² + 3x + 4y + 9/8 = 0  

x² + y² + 3x/2 + 2y + 9/16 = 0

x² + y² + 3x/2 + 2y =- 9/16

x² + 3x/2 + 9/16 + y² + 2y  + 1 = -9/16 + 9/16 + 1

=> (x - 3/4)² + (y + 1)² = 1²

Center = (3/4 , -1)  Radius = 1

(iv) 4x² + 4y² - 24x - 8y - 24 = 0

x² + y² - 6x - 2y - 6 = 0

x² + y² - 6x - 2y = 6

x²  - 6x + 9 + y²- 2y + 1= 6 + 9 + 1

(x -3)² + (y -1)² = 4²

Center = (3 ,1)  Radius = 2

Similar questions