Math, asked by tufannayak0742, 1 month ago

Find the centre and the radius of the circle x²+y²+8x+10y-8=0​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

Given, equation of the circle,

\sf{x^2+y^2+8x+10y-8=0}

\tt{Centre\equiv(-4,-5)}

\tt{Radius=\sqrt{16+25+8}=\sqrt{49}=7}

Answered by TrustedAnswerer19
11

 \sf \: Given \:  that  \: the  \: equation \:  of  \: a \: circle  \\  \\  \small{\orange{ \boxed{\boxed{\begin{array}{cc}   \rm \: {x}^{2}  +  {y}^{2}   + 8x + 10y - 8 = 0\\ \\  \small{ \rm \implies \:  {x}^{2}  +  {y}^{2} + 2 \times 4\times x + 2 \times 5 \times y - 8 = 0} \\  \\  \sf \: standard \: equation \: o f \: circle \: is :  \\  \\  \rm  \: a{x}^{2}  +  a{y}^{2}  + 2gx + 2fy + c = 0 \\  \\  \sf \: by \: comparing \\  \\ \rm \: 2gx = 2 \times 4 \times x  \implies g =  4  \\ \\  \rm \: 2fy = 2 \times 5 \times y \implies \: f =  5\\ \\  c =  - 8 \\  \\\sf\:center\:(-g,-f)\:=\:(-4,-5)  \\\\\sf \: radius \:  \: r =  \sqrt{ {g}^{2}  +  {f}^{2} - c }  \\ \\   =  \sqrt{ {( 4)}^{2} + (  { 5)}^{2}   - ( - 8)}   \\  \\  =  \sqrt{16 + 25 + 8} \\  \\  =  \sqrt{49}  \\  \\  = 7 \: unit   \\  \\  \\  \therefore \sf \: radius \:  \: r =   7 \: unit\end{array}}}}}

Similar questions