Math, asked by lodhisagarrajput, 1 year ago

Find the centre of a circle passing through the points (6, -6),( 3,-7) and (6,3).​

Answers

Answered by dreamyy
0

Let the centre of the circle be O and let the points be A(6, -6), B(3, -7), C(6, 3).

Then, OA=OB=OC (Radii of the same circle)

Let the point O be (x, y)

distance formula

= root(x2 - x1)^2 + (y2 - y1)^2

OA^2 = OB^2

=> (x - 6)^2 + (y + 6)^2 = (x - 3)^2 + (y + 7)^2

=> x^2 - 12x + 36 + y^2 + 12y + 36 = x^2 -6x + 9 + y^2 + 14y + 49

=> 72 - 12x + 12y = 14y - 6x + 58

=> 6x + 2y = 14

=> 3x + y = 7 -------------- ( 1 )

Similarly,

OB^2 = OC^2

(x - 3)^2 + (y + 7)^2 = (x - 6)^2 + (y - 3)^2

x^2 - 6x + 9 + y^2 + 14y + 49 = x^2 - 12x + 36 + y^2 - 6y + 9

-6x + 14y + 58 = -12x -6y + 45

-6x -20y = 13

6x + 20y = -13 --------- ( 2 )

Solve ( 1 ) and ( 2 )

3x + y = 7 ×2

6x + 20y = -13

6x + 2y = 14

6x + 20y = -13

- - +

-------------------------------

0 - 18y = 27

-------------------------------

y = -27/18

= -3/2

Put in eqn ( 1 )

3x - 3/2 = 7

3x = 7 + 3/2

3x = 15/2

x = 5/2

Thus the centre of the circle is O ( -3/2, 5/2)

Similar questions