Math, asked by srijithsivakumar15, 3 months ago

Find the centre of curvature of y= x^2 of the origin​

Answers

Answered by jawalepornima
0

Answer:

the curvature will x +8

because of the sentral part is x=eu

Answered by gayatrikumari99sl
0

Answer:

Centre of curvature is  \frac{1}{8\sqrt{2} }

Step-by-step explanation:

Explanation:

Given, y = x^{2} of the origin which means that we need to find the centre of curvature at point (0,0).

We know that ,

Centre of curvature (ρ) = \frac{[(1+\frac{dy}{dx} )^{2} ]^{\frac{3}{2} } }{\frac{d^{2}y }{dx^{2} } }  .............(ii)

Step 1 :

y = x^{2} ...........(i)

differentiate  y with respect to x

\frac{dy}{dx}  = 2x  

again differentiate with respect to x

(\frac{d^{2} y}{dx^{2} } ) = 2

Step 2:

put the value of  (\frac{d^{2} y}{dx^{2} } )  and \frac{dy}{dx}  in equation (ii)

Therefore ,

                         (ρ)  =  \frac{[(1+\frac{dy}{dx} )^{2} ]^{\frac{3}{2} } }{\frac{d^{2}y }{dx^{2} } }

              ⇒         (ρ)  =    \frac{[1+(2x)^{2} ]^{\frac{3}{2} } }{2}

The centre of curvature at x = 0

   =        \frac{[1+(2  . 0)^{2} ]^{\frac{3}{2} } }{2}              

 =\frac{1}{(2)^{\frac{3}{2} } } = \frac{1}{8\sqrt{2} }

Final answer :

Hence , the centre of curvature of y = x^{2} of the origin is  \frac{1}{8\sqrt{2} }.

Similar questions