Math, asked by amritpadhic501, 1 year ago

Find the centre of mass of 3 particles 100gms,150gms and 200gms at the vertices of an equilateral triangle

Answers

Answered by Anonymous
16

Let m1 = 100 g. m2 = 150 g. m3 = 200 g. a = 0.5 m = 50 cm.

Center of mass coordinates :

x = [-a/2 * m1 + 0 * m2 + a/2 * m3] / (m1 + m2 + m3)

= (m3 - m1) a /[2 (m1+m2+m3) ]

= (200 - 100)*50 / [2 * 450] cm.

= 50/9 cm

y = [0 * m1 + √3/2 * a * m2 + 0 * m3 ] / (m1 + m2 + m3)

= √3/2 * a * m2 /(m1 + m2 + m3)

= √3/2 * 50 * 150 /450 cm

= 25/√3 cm

y coordinate of the centroid of the triangle: 1/3 * √3/2 * a = 25/√3 cm

Thus the center of mass is 50/9 cm to the right of the centroid G of the triangle ABC.

Click to let others know, how helpful is it

4.0

59 votes

THANKS 112

kvnmurty

:-) :-)

Rajendrapatel25Ambitious

Let m1 = 100 g. m2 = 150 g. m3 = 200 g. a = 0.5 m = 50 cm.

Center of mass coordinates :

x = [-a/2 * m1 + 0 * m2 + a/2 * m3] / (m1 + m2 + m3)

= (m3 - m1) a /[2 (m1+m2+m3) ]

= (200b)*50 / [2 * 450] cm.

= 50/9 cm

y = [0 * m1 + √3/2 * a * m2 + 0 * m3 ] / (m1 + m2 + m3)

= √3/2 * a * m2 /(m1 + m2 + m3)

= √3/2 * 50 * 150 /450 cm

= 25/√3 cm

y coordinate of the centroid of the triangle: 1/3 * √3/2 * a = 25/√3 cm

Thus the center of mass is 50/9 cm to the right of the centroid G of the triangle ABC.

Similar questions