Math, asked by amritanshu13, 9 months ago

Find the centre of the circle passing through (-4,-11), (10,-13) and (-2, -13).

Answers

Answered by Anonymous
1

Given ,

the circle passing through (-4,-11), (10,-13) and (-2, -13)

Let , the centre of circle be (x , y)

According to the question ,

 \tt \implies AO =  \sqrt{ { \{x - ( - 4) \}}^{2}  +  { \{ y - ( - 11)\}}^{2} }

\tt \implies  AO =  \sqrt{ { \{ x + 4\}}^{2}  +  { \{ y + 11\}}^{2} }

Similarly ,

\tt \implies  BO = \sqrt{ { \{x - 10\}}^{2}  +  { \{ y - ( - 13)\}}^{2} }

\tt \implies  BO =  \sqrt{ { \{ x  -  10\}}^{2}  +  { \{ y + 13\}}^{2} }

And

\tt \implies  CO =   \sqrt{ { \{x - ( - 4) \}}^{2}  +  { \{ y - ( - 11)\}}^{2} }

\tt \implies CO = \sqrt{ { \{ x   + 2\}}^{2}  +  { \{ y + 13\}}^{2} }

Since , AO , BO and CO are the radius of circle

Thus ,

\tt \implies AO  = BO

 \tt \implies  \sqrt{ { \{ x + 4\}}^{2}  +  { \{ y + 11\}}^{2} } = \sqrt{ { \{ x  -  10\}}^{2}  +  { \{ y + 13\}}^{2} }

Squaring on both sides , we get

\tt \implies  { {(x + 4)}^{2}  + (y + 11)}^{2}  =  {(x - 10)}^{2}  +  {(y + 13)}^{2}

\tt \implies  {(x)}^{2}  + 16 + 8x +  {(y)}^{2}  + 121 + 22y =  {(x)}^{2}  + 100 - 20x +  {(y)}^{2}  + 169 + 26y

\tt \implies 137 + 8x + 22y = 269 - 20x + 26y

\tt \implies 28x - 4y = 132

\tt \implies 7x - y = 33 -  -  -  - (i)

And

\tt \implies BO = CO

 \tt \implies  \sqrt{ { \{ x - 10\}}^{2}  +  { \{ y + 13\}}^{2} } = \sqrt{ { \{ x  + 2\}}^{2}  +  { \{ y + 13\}}^{2} }

Squaring on both sides , we get

\tt \implies  {(x - 10)}^{2}  +  {(y + 13)}^{2}  =  {(x + 2)}^{2}  +  {(y + 13)}^{2}

\tt \implies  {(x)}^{2}  + 100 - 20x =  {(x)}^{2}  + 4 + 4x

\tt \implies  96 = 24x

\tt \implies x =  \frac{96}{24}

\tt \implies x = 4

Put the value of x = 4 in eq (i) , we have

\tt \implies 7(4) - y = 33

\tt \implies y = 28 - 33

\tt \implies y =  - 5

Hence , the center of circle is (4 , -5)

Similar questions