Math, asked by manvi8642, 11 months ago

Find the centroid and incentre of the triangle whose vertices are (2,4) , (6,4), and (2,0)​

Answers

Answered by bobybhagat45
0

Answer:

  1. the centroid of the triangle ABC is G(3.3,2.67)

Attachments:
Answered by Anonymous
5

 \bold{Answer} \\   \green{\tt{ \therefore  coordinate\:of\:centroid = (\frac{10}{3},\frac{8}{3})}}

• From the given question :

 \bold{Step-by-step \: explanation} \\  \\  \text{According \: to \: centroid \: formula} \\   \tt  \to  x =  \frac{ x_{1} +  x_{2}  +  x_{3}  }{3}  \\  \\  \tt \to  x =  \frac{ 2+6+2}{3}  \\  \\  \tt \to x =  \frac{6+4}{3}  \\  \\   \green{\tt  \to x =\frac{10}{3} } \\  \\  \tt  \to  y =  \frac{ y_{1} +  y_{2}  +  y_{3}  }{3}  \\  \\  \tt \to  y =  \frac{ 4  +4+0}{3}  \\  \\  \tt \to y=  \frac{ 4+4}{3}  \\  \\  \green{\tt  \to y=  \frac{8}{3}}  \\  \\    \green{\tt{\therefore Coordinate \: of \: centroid \: is \: (\frac{10}{3}, \frac{8}{3})} }

Similar questions