Math, asked by Nandhanasri1234, 9 months ago

Find the Centroid of a ΔPQR,whose vertices are P(1,1) Q(2,2) R(-3,-3) ​

Answers

Answered by Anonymous
18

SOLUTION

The given points are P(1,1),Q(2,2) and R(-3,3)

To finD

Centroid of the traingle

Centroid of a triangle is given as :

\sf S(x,y) = \bigg( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \bigg)

Putting the values,we get :

 \implies \sf s(x,y) =  \bigg( \dfrac{1 + 2 - 3}{3} , \dfrac{1 + 2 - 3}{3} \bigg) \\  \\  \implies \:  \boxed{ \boxed{ \sf{s(x,y) = (0,0)}}}

The co-ordinates of the centroid are (0,0)

Answered by Anonymous
29

Question:

Find the Centroid of a ΔPQR,whose vertices are P(1,1) Q(2,2) R(-3,-3) .

Answer:

Let (x,y) be the centroid of the triangle whose vertices are (1,1),(2,2),(-3,-3).

x =  \frac{ x_{1} +x_{2} +x_{3}}{3}...........(1) \\  \\ where  \\  \implies\: x_{1} = 1   \\   \implies \: x_{2} = 2 \\   \implies \: x_{3} =  - 3 \\  \\ put \: value \: x_{1} \: x_{2} \: x_{3} \: in \: given \: equation(1) \\  \\ x =  \frac{1  + 2 + ( - 3)}{3}  \\  \\ x =  \frac{3 - 3}{3}  \\  \\ x =  \frac{0}{3}  \\  \\ x = 0

Now,

y =  \frac{y_{1} +y_{2} +y_{3}}{3}.........(2)  \\  \\ where \\  \implies \: y_{1}  = 1\\  \implies \: y_{2} = 2 \\  \implies \: y_{3} =  - 3 \\  \\ put \: the \: value \: of \: y_{1} \: y_{2} \: y_{3} \: in \: given \: equation(2) \\ y =  \frac{1 + 2 - 3}{3}  \\  \\ y =  \frac{0}{3}  \\  \\ y = 0

centriod (0,0)

Similar questions