Math, asked by neodynamium737, 1 year ago

Find the centroid of a triangle whose vertices are (3 -7) (-8 6) and (5 10) in .com

Answers

Answered by Adarsh0
3
X=(3-8+5)/3 =0
y=(-7+6+10)/3=3
centroid is (0,3)
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(0,3)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (3,-7)} \\ \\ : \implies \text{Coordinate \: of \: B = (-8,6)} \\ \\ : \implies \text{Coordinate \: of \: C = (5,10)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{3+(-8) + 5}{3} \\ \\ : \implies x = \frac{8-8}{3} \\ \\ \green{: \implies x =0} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{-7+6+10}{3} \\ \\ : \implies y = \frac{9}{3} \\ \\ \green{: \implies y =3} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(0,3)}

Similar questions