Math, asked by sunilsai8247, 10 months ago

Find the centroid of a triangle, whose vertices are (6, 2), (0, 0) and (4, – 5).

Answers

Answered by Equestriadash
20

Given: The vertices of the triangle are (6, 2), (0, 0) and (4, -5).

To find: The centroid.

Answer:

Centroid formula:

\tt \Bigg( \dfrac{x_1\ +\ x_2\ +\ x_3}{3},\ \dfrac{y_1\ +\ y_2\ +\ y_3}{3}\Bigg)

From the data we have,

\tt x_1\ =\ 6\\\\x_2\ =\ 0\\\\x_3\ =\ 4\\\\y_1\ =\ 2\\\\y_2\ =\ 0\\\\y_3\ =\ -5

Using them in the formula,

\tt \Bigg(x,\ y\Bigg)\ =\ \Bigg(\dfrac{6\ +\ 0\ +\ 4}{3},\ \dfrac{2\ +\ 0\ +\ -5}{3}\Bigg)\\\\\\\Bigg(x,\ y\Bigg)\ =\ \Bigg(\dfrac{10}{3},\ \dfrac{-3}{3}\Bigg)

Therefore, the centroid of the triangle is (10/3, -1).

Answered by ButterFliee
7

\huge{\underline{\underline{\bf{GIVEN:-}}}}

  • The Vertices of triangle are (6,2) , (0,0) and (4,-5)

\huge{\underline{\underline{\bf{TO\:FIND:-}}}}

Find the Centroid of triangle = ?

\large{\underline{\underline{\bf{FORMULA\:USED:-}}}}

\large\bf\red{Centroid = \frac {x_1 + x_2 + x_3 }{3},\frac{y_1 + y_2 + y_3}{3}}

\huge{\underline{\underline{\bf{SOLUTION:-}}}}

\bf{x_1 = 6} ⠀⠀⠀⠀ \bf{y_1 = 2}

\bf{x_2 = 0} ⠀⠀⠀⠀ \bf{y_2 = 0}

\bf{x_3 = 4}⠀⠀⠀⠀ \bf{y_3 = -5}

We have given that the vertices of triangle are (6,2), (0,0) and (4,-5)

☞ On putting the values in formula, we get

\implies\rm{ Centroid =\frac{6+0+4}{3},\frac{2+0+(-5)}{3}}

\implies\rm{ Centroid =\frac{6+0+4}{3},\frac{2+0-5}{3}}

\implies\rm{Centroid =\large\frac{10}{3},\cancel\frac{-3}{3}}

\implies\rm{Centroid =\frac{10}{3},-1}

Hence, the Centroid of the triangle is \bf{\frac{10}{3}}, \bf{-1}

Similar questions