Math, asked by Arminder3808, 11 months ago

Find the centroid of the triangle abc whose vertices are a(2,5) b (-3,2) and c(7,-1)

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(2,2)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (2,5)} \\ \\ : \implies \text{Coordinate \: of \: B = (-3,2)} \\ \\ : \implies \text{Coordinate \: of \: C = (7,-1)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{2+(-3) + 7}{3} \\ \\ : \implies x = \frac{6}{3} \\ \\ \green{: \implies x =2} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{5+2+(-1)}{3} \\ \\ : \implies y = \frac{6}{3} \\ \\ \green{: \implies y =2} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(2,2)}

Similar questions