Math, asked by shiva0880, 10 months ago

find the centroid of the triangle whose vertices are(1,4)(-1,1)(3,-2)

Answers

Answered by shindeom538
0

Answer:

-5/2,-7/3

Step-by-step explanation:

  • x1+x2+x2/3 , y1+y2+y3/3
  • 1+(-1)+3/3 , 4+1+(-2)/3
  • -5/3 , -7/3
Answered by Anonymous
0

Step-by-step explanation:

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(1,4), \: y(-1,1) \: and \: z(3,-2)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(1,4) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(-1,1) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(3,-2) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{1 + ( - 1) + 3}{3}) ,( \frac{4 + 1 - 2}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{0 + 3}{3}) , (\frac{5 - 2}{3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{3}{3} ),( \frac{3}{3} ) \\  \\ \rightarrow \sf \: Centroid = (1,1)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (1,1).

Similar questions