Math, asked by jaswant9, 1 year ago

find the centroid of the triangle whose vertices are (-1,4),(5,2),(-1,3)

Answers

Answered by anmishatyagi
3
let the centroid be (x,y)
so,
x = (-1+5-1)/3 = 3/3 = 1
y = (4+2+3)/3 = 9/3 = 3
so,
centroid is (1,3)

Arushi1111: your answer is wrong
PujaMahapatra: u r correct
anmishatyagi: mine is correct
anmishatyagi: you don't know what is centroid
PujaMahapatra: (1,3 ) is correct
anmishatyagi: yes
PujaMahapatra: thx sis
Arushi1111: yes you are right
Arushi1111: i am wrong
Answered by BrainlyConqueror0901
24

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(1,3)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (-1,4)} \\  \\ : \implies  \text{Coordinate \: of \: B = (5,2)} \\  \\ : \implies  \text{Coordinate \: of \: C = (-1,3)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{  -1+5 +(-1)}{3} \\  \\ : \implies x = \frac{3}{3}  \\  \\  \green{: \implies x =1} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 4  +2+3}{3} \\  \\ : \implies y = \frac{9}{3}  \\  \\  \green{: \implies y =3} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(1,3)}

Similar questions