Math, asked by 1aman1150, 1 year ago

Find the centroid of the triangle whose vertices are (-1,4), (5,2), (1,3).

Answers

Answered by Rose28J
3

centroid of a triangle = ( x1+x2+x3 / 3 , y1+y2+y3 / 3)

x1= -1     y1= 4

x2=5    y2= 2

x3=1     y3=3

centroid= ( -1+5+1/3 , 4+2+3/3)

= (5/3 , 9/3) = (5/3 , 3)



Answered by BrainlyConqueror0901
24

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(\frac{5}{3},3)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (-1,4)} \\  \\ : \implies  \text{Coordinate \: of \: B = (5,2)} \\  \\ : \implies  \text{Coordinate \: of \: C = (1,3)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{  -1 +5 + 1}{3} \\  \\ : \implies x = \frac{6-1}{3}  \\  \\  \green{: \implies x =\frac{5}{3}} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 4  +2+3}{3} \\  \\ : \implies y = \frac{9}{3}  \\  \\  \green{: \implies y =3} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(\frac{5}{3},3)}

Similar questions