Math, asked by mayeda123123, 4 months ago

find the centroid of the triangle whose vertices are (2,-3),(-4,2) and (8,13).

Answers

Answered by Anonymous
3

Given

 \tt \to \: P(2,-3) ,Q(-4,2)  \: and \: R(8,13)

To Find the centroid of the Triangle

Formula

 \tt \to \: G =   \bigg(\dfrac{ x_1 +x_2 + x_3 }{3} , \dfrac{y_1 + y_2 + y_3}{3}  \bigg)

Now we have

\tt \to \: P(x_1 = 2,y_1 = -3) ,Q(x_2 = -4,y_2 = 2)  \: and \: R(x_3 = 8,y_3 = 13)

Now Put the Value on formula

 \tt \to \: G =  \bigg( \dfrac{2 - 4 + 8}{3} , \dfrac{ - 3 + 2 + 13}{3}  \bigg)

\tt \to \: G =  \bigg( \dfrac{10 - 4 }{3} , \dfrac{ 10 + 2 }{3}  \bigg)

\tt \to \: G =  \bigg( \dfrac{6 }{3} , \dfrac{ 12}{3}  \bigg)

\tt \to \: G =  \bigg( 2 , 4 \bigg)

Answer

\tt \to \: G =  \bigg( 2 , 4 \bigg)

More Formula

1)Distance Formula

 \tt \to \: pq =  \sqrt{(x_2 - x_1) {}^{2}  + (y_2 - y_1) {}^{2} }

2) Mid Point

 \tt \to \: p =  \bigg( \dfrac{x_1 + x_2}{2} , \dfrac{y_1 + y_2}{2}  \bigg)

Similar questions